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Abstract— By taking into account the properties and limita-
tions of the human visual system (HVS), images can be more ef-
ficiently compressed, colors more accurately reproduced, prints
better rendered, to mention a few major advantages. To achieve
these goals it is necessary to build a computational model of the
HVS. In this paper we give an introduction to the general issue
of HVS-modeling and review the specific applications of visual
quality assessment and HV S-based image compression, which are
closely related. On one hand, these two examples demonstrate
the common structure of HVS-models, on the other hand they
also show how application-specific constraints influence model
design. Recent vision models from these application areas are
reviewed and summarized in a table for direct comparison.
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I. INTRODUCTION

N many different image processing applications the limita-

tions of the human visual system (HVS) can be exploited to
improve the performance from a visual quality point of view.
Such HVS-model based approaches are only slowly replacing
“classical” schemes, in which the quality metric consists of a
simple pixel-based difference measure, like the mean squared
error (MSE). The quality improvement that can be achieved
using an HVS-based approach instead is significant and ap-
plies to a large variety of image processing applications. For
instance, quality assessment tools try to predict subjective rat-
ings, image compression schemes reduce the visibility of intro-
duced artifacts, and watermarking schemes hide more robustly
information in images. The HVS also plays a major role in
applications related to the reproduction of images: half-toning
patterns are perceptually optimized and colors rendered more
accurately. The design of new image capture and display de-
vices is no longer possible without considering the properties of
the human visual system.

Even if the specific requirements for each of these applications
are different, the common element is always a computational
model of human vision. Its general structure is usually deter-
mined by the modeling of psychophysical effects. Models based
on neurobiology have been designed as well, but are less useful
in the applications considered because of their overwhelming
complexity and the limited knowledge of the underlying pro-
cesses (see section II). How the general structure of computa-
tional models can be derived from psychophysics is outlined in
section III.

Human observers are still needed for experiments to measure
specific effects of vision or to evaluate the final prediction perfor-
mance of any new HVS-model. Such experiments are very time
consuming and have to be carefully designed and controlled in
order to achieve reliable and reproducible results. Section IV
gives an overview of the most frequently used methods for sub-
jective tests.

Only very few articles have reviewed the role of human vi-
sion modeling in image processing applications [41, 88]. Here,
a review of visual quality assessment tools and HVS-based im-
age compression schemes is presented. Quality assessment tools
(see section V) represent the state of the art in HVS-modeling —

almost any algorithm is permitted to approximate visual per-
ception in the best possible manner. Image compression (see
section VI) is probably the most wide-spread application that
can be improved considerably by the use of HVS-models. Most
importantly, image compression schemes require a quality met-
ric for rate control. However, the constraint to keep the data
volume as small as possible without introducing any new re-
dundancy as well as the need for HVS-models with reasonably
low complexity make HVS-based image compression a particu-
lar challenge. Finally, recent HVS-models from both application
areas are summarized with regard to their structural elements
and reported performance in Table I, which allows a comparison
at a glance.

II. PHYSIOLOGY OF VISION

Most visual properties of the HVS are not intuitive. Even
when they have been characterized by psychophysical experi-
ments, physiological evidence is the only way to understand the
phenomenon completely. This section gives a short introduc-
tion to the main physiological concepts of the HVS that could
also serve for its modeling. For a more detailed review of vision
physiology, the reader is referred to [57,127].

The physiology of human vision includes the eyes and the
retina, where vision is initiated, as well as the visual pathways
and the visual cortex, where high-level perception takes place.
The eyes represent the first stage of the HVS. They can be
understood as a complicated camera continually in motion, al-
lowing accommodation to different light levels and to objects at
various distances. The eyes have certain optical defects such as
optical blur and chromatic aberration, but normally these do
not affect the rest of the processing chain.

At the back of the eyes lies the retina, a dense layer of in-
terconnected neurons that sample and process the visual infor-
mation. The role of the retina is preponderant, because the
processing that the retina performs governs the rest of the vi-
sual chain. The retina encodes the visual information before
transmitting it along the optical nerve, which is a channel with
limited capacity. The ratio (=100:1) between the number of
receptors in the retina and the number of fibers in the optical
nerve implies already at this stage a compression of the visual
information. This “compression” is achieved by a replacement
of the photographic image with spatial, temporal and chromatic
characteristics such as contours, color and motion.

The primary function of the retina is the sampling of the
optical signal by photoreceptors. There are two kinds of pho-
toreceptors, rods and cones. Rods are sensitive to low levels of
luminosity and saturate in photopic conditions, under which im-
ages are usually viewed. For this reason and also because rods
are almost non-existent in the center of the visual field, their
contributions are generally neglected in image processing appli-
cations. Cones can be classified as L-, M- and S-cones according
to their sensitivity to long, medium and short wavelengths, re-
spectively. For the moment there is no real consensus on the
exact sensitivity spectrum of the three cone types; depending
on the method used, molecular genetics of the photo-pigment
[77], suction micro-electrodes [10], or psychophysical studies of
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Daltonians and normal observers [109-111], the results differ
slightly. Establishing the relationship between these approaches
is difficult due to adaptation and the interactions between the
retinal neurons.

The cones do not provide detailed spectral information, but a
weighted summation over the different sensitivity spectra. This
means that three values should be sufficient to reproduce human
color distinction capabilities, which leads to the description of
color by tri-stimulus values. Grassmann [42] formalized color
as a three-dimensional vector space, which makes computations
with color values possible. This idea has been used by the CIE
(Commission International de I’Eclairage) to define several col-
orimetric functions like RGB and XY7Z [149].

Human color perception is not directly related to the cone
responses, but rather to their differences [54]. These are repre-
sented by an achromatic channel and two opponent-color chan-
nels [17], which code red-green and blue-yellow color differences.
This coding decreases the redundancy between the signals of
the three cone types [14], because it follows the principal com-
ponents of natural scenes [100]. This efficient coding takes place
in the retina, and Derrington et al. [24] proposed a color space
based on the null response of color-opponent retinal neurons
which respond to color differences. In image processing this cod-
ing is exploited in several color spaces such as Y CgCr, where
Y is the luminance channel and Cp, Cg the color-difference
channels.

The HVS and especially the retina are able to adapt their
sensitivity to the input signal. This allows to handle a wide
range of light intensities with a small number of quantization
levels. The mechanisms for adaptation include the iris, which
controls the size of the pupillary aperture and thus the retinal
illumination, the photoreceptors, and the ganglion cells [108].
These adaptations greatly influence the perception of color and
luminosity contrast [140], hence HVS-models should incorporate
these mechanisms of adaptation. For that reason, the CIE has
formalized a color space called L*a*b*, a non-linear opponent-
colors space adapted to the light source.

The neurons in the retina realize a spatio-temporal filtering of
the visual signal through their synaptic interactions [148]. This
filtering is quite complex and not yet completely understood.
It is characterized by lateral inhibition, the persistence effect,
and feedback. Its influence on perception is very high, because
the processing of information is very local, which is not taken
into account by many current color models. As an example,
improvements to the L*a*b* color space were proposed to model
the filtering properties of the retina (see section V-D).

As mentioned above, a great amount of data reduction takes
place in the retina before the information is passed on through
the optical nerve. Two main pathways have been identified
at the output of the retina, which are referred to as magno-
cellular and parvocellular pathways. Their functional role has
been investigated by electrophysiological studies [62,65]. The
magnocellular pathway carries blurred spatial information of lu-
minance at high speeds, which is important for reflex actions,
whereas the parvocellular pathway carries spatial detail and
color information, which is important for conscious perception.
This type of separation suggests similar concepts for engineering
applications (e.g. feature-based face recognition).

In the visual cortex, many cells are tuned to specific stimu-
lus properties such as orientation, form, color, spatio-temporal
frequency, stereo information, or motion, and decompose the
visual information accordingly. This tuning has inspired algo-
rithms that decompose images into different channels in a sim-
ilar fashion (see sections III-B and V-E). Anatomically, several

areas can be distinguished in the visual cortex, among them
area V1 (also known as primary visual cortex), which receives
the input from the retina, area V2, which processes color, form
and stereo, area V4, which also processes color, and area MT,
which handles movement and stereo vision [68]. Although these
cortical areas have been identified according to their functional
role, this role is not explicit. Furthermore, many stages in the
visual cortex are still unknown, but new cortical regions and
functionalities are now investigated by techniques such as func-
tional MRI [25].

Despite our current knowledge of the HVS, its complexity
makes it impossible to construct a complete physiological model.
Some attempts have been made [6,7,44,119], but they have been
restricted to models of the retina and do not account for higher-
level perception. Consequently HVS models used in image pro-
cessing are usually behavioral and are based on psychophysical
studies.

III. HVS-MODELS FOR IMAGING APPLICATIONS

HVS-models account for a number of psychophysical effects
[143] that are typically implemented in a sequential process as
shown in Fig. 1.
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Fig. 1. Block-diagram of a typical HVS-model.

A. Luminance and Color

The first stage in the processing chain of HVS-models con-
cerns the transformation into an adequate perceptual color
space, usually based on opponent colors. After this step the
image is represented by one achromatic and two chromatic chan-
nels carrying color difference information.

This stage can also take care of the so-called luminance mask-
ing or lightness non-linearity [106], the non-linear perception
of luminance by the HVS. Such a non-linearity is inherent to
more sophisticated color spaces like CIE L*a*b*, but needs to
be added to simple linear color spaces. In compression applica-
tions, it can be considered by setting the quantization precision
of the transform coefficients [36].

B. Multi-Channel Decomposition

It is widely accepted that the HVS bases its perception on
multiple channels that are tuned to different ranges of spa-
tial frequencies and orientations. Measurements of the recep-
tive fields of simple cells in the primary visual cortex revealed
that these channels exhibit approximately a dyadic structure
[21, 35]. This behavior is well matched by a multi-resolution
filter bank or a wavelet decomposition. An example for the
former is the cortex transform [128], a flexible multi-resolution
pyramid, whose filters can be adjusted within a broad range.
Wavelet transforms on the other hand offer the advantage that
they can be implemented in a computationally efficient manner
by a lifting scheme [20, 95].

It is believed that there are also a number of channels process-
ing different object velocities or temporal frequencies. These
include one temporal low-pass and one, possibly two, tempo-
ral band-pass mechanisms in the human visual system [33,50],
which are generally referred to as sustained and transient chan-
nels, respectively.
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C. Contrast and Adaptation

The response of the HVS depends much less on the abso-
lute luminance than on the relation of its local variations to the
surrounding background, a property known as Weber-Fechner
law [106]. Contrast is a measure of this relative variation, which
is commonly used in vision models. While it is quite simple to
define a contrast measure for elementary patterns, it is very dif-
ficult to model human contrast perception in complex images,
because it varies with the local image content [89,90,146]. Fur-
thermore, the adaptation to a specific luminance level or color
can influence the perceived contrast.

D. Contrast Sensitivity

One of the most important issues in HVS-modeling concerns
the decreasing sensitivity for higher spatial frequencies. This
phenomenon is parameterized by the contrast sensitivity func-
tion (CSF). The correct modeling of the CSF is especially dif-
ficult for color images. Typically, separability between color
and pattern sensitivity is assumed, so that a separate CSF for
each channel of the color space needs to be determined and
implemented. Achromatic CSF’s are summarized in [9], color
CSF measurements are described in [40,80,124], and a detailed
description for efficient CSF-modeling in combination with the
wavelet decomposition can be found in [85].

The human contrast sensitivity also depends on the tempo-
ral frequency of the stimuli. Similar to the spatial CSF, the
temporal CSF has a low-pass or slightly band-pass shape. The
interaction between spatial and temporal frequencies can be de-
scribed by spatio-temporal contrast sensitivity functions, which
are commonly used in vision models for video [19]. For easier
implementation, they may be approximated by combinations of
components separable in space & time [58,150].

E. Masking

Masking occurs when a stimulus that is visible by itself can-
not be detected due to the presence of another. Sometimes the
opposite effect, facilitation, occurs: a stimulus that is not vis-
ible by itself can be detected due to the presence of another.
Within the framework of image processing it is helpful to think
of the distortion or coding noise being masked (or facilitated)
by the original image or sequence acting as background. Mask-
ing explains why similar distortions are disturbing in certain
regions of an image while they are hardly noticeable elsewhere
(cf. Fig. 2).

Several different types of spatial masking can be distinguished
[61,137], but this distinction is not clear-cut. The terms contrast
masking, edge masking, and texture masking are often used to
describe masking due to strong local contrast, edges, and local
activity, respectively. Temporal masking is a brief elevation of
visibility thresholds due to temporal discontinuities in intensity,
e.g. at scene cuts [107]. It can occur not only after a disconti-
nuity, but also before [3].

IV. SUBJECTIVE TESTING

Subjective tests provide the foundations for building vision
models. At the same time, they are the only true benchmark
for evaluating the performance of perception-based image pro-
cessing tools. Unfortunately, perceptual responses cannot be
represented by an exact figure; due to their inherent subjectiv-
ity, it can only be described statistically. Even in psychophysical
threshold experiments, where the task of the observer is just to
give a yes/no answer, there exists a significant variation be-
tween observers. In the evaluation of supra-threshold artifacts,
these differences become even more pronounced, because the

objectionability of artifacts depends on the observers’ expec-
tations and presumptions as to the intended application. The
observers’ differing experiences also lead to a different weighting
of the artifacts [23].

The tools for measuring the perceptual performance of sub-
jects are provided by psychophysics [37]. In general, two kinds
of decision tasks can be distinguished, namely adjustment and
judgment [91]. In the former, the observer is given a classifica-
tion and modifies the stimulus accordingly, while in the latter,
the observer is given a stimulus and provides the classification.
Adjustment tasks include setting the threshold amplitude of a
stimulus, canceling a distortion, or matching a stimulus to a
given one. Judgment tasks on the other hand include yes/no
decisions, forced choices between two alternatives, and magni-
tude estimation on a rating scale.

Most of these adjustment and judgment tasks focus on thresh-
old measurements, which traditionally have played an important
role in psychophysics, because researchers like to minimize the
influence of cognition and subjectivity by means of simple cri-
teria and tasks. In the experiments, the threshold is defined as
the stimulus level at a specific detection probability, e.g. 75%,
depending on the type of task. Signal detection theory provides
the statistical framework for the evaluation of such measure-
ments [43].

‘While threshold detection experiments are well suited to the
investigation of low-level sensory mechanisms, a simple yes/no
answer is not sufficient to capture the observer’s visual experi-
ence in many cases. With respect to the visual quality of natural
scenes, for example, the threshold level is important as it cor-
responds to visually lossless compression. However, the quality
range above threshold is of great interest as well, because the
goal is a visually graceful degradation of the compressed output
with decreasing bitrate. This has stimulated a great deal of ex-
perimentation with supra-threshold stimuli and non-detection
tasks in recent years [125].

Subjective assessment of visual quality has been formalized
in ITU-R Rec. 500 [52], which suggests standard viewing con-
ditions, criteria for the selection of observers and test mate-
rial, assessment procedures, as well as data analysis methods.
While targeted at the subjective assessment of television pic-
tures, most of it directly applies to still images as well. In
particular, it describes the Double Stimulus Continuous Qual-
ity Scale (DSCQS) and the Double Stimulus Impairment Scale
(DSIS), two of the most commonly used methods.

In a DSCQS test, viewers are shown stimulus pairs consist-
ing of a “reference” and a “test” stimulus, which are presented
twice in alternating fashion, with the order of the two chosen
randomly for each trial. Subjects are not informed which is the
reference and which is the test stimulus. They rate each of the
two separately on a continuous quality scale ranging from “bad”
to “excellent”. Analysis is based on the difference in rating for
each pair, which is calculated from an equivalent numerical scale
from 0 to 100. DSCQS has been shown to work reliably even
when the quality of test and reference stimuli are rather similar,
because it is quite sensitive to small differences in quality.

In a DSIS test, the reference is always displayed before the
teststimulus, and both are shown only once. Subjects rate the
amount of impairment in the test stimulus on a discrete five-
level scale ranging from “very annoying” to “imperceptible”.
DSIS is the preferred method when evaluating clearly visible
impairments.

The above-mentioned testing procedures can be used for im-
ages and (short) sequences alike. A method designed specifically
for measuring the time-varying quality of longer video sequences
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is the Single Stimulus Continuous Quality Evaluation (SSCQE)
[62,79], where viewers watch a program of typically 20-30 min-
utes duration. Using a slider, they continuously rate the instan-
taneously perceived quality on the DSCQS scale. This makes
it possible to avoid the recency phenomenon, a bias in the rat-
ings toward the final 10-20 seconds of a video sequence due to
limitations of human working memory, which would become ap-
parent with single-rating methods. Furthermore, no reference is
shown, which puts the subjects in a situation closer to an actual
home viewing environment.

V. VISUAL QUALITY ASSESSMENT
A. Introduction

Perhaps the most direct application of vision models in im-
age processing is visual quality assessment, i.e. measuring the
perceived quality of a given image or video. The properties and
limitations of the human visual system determine the visibility
of distortions and thus perceived quality. In this section we dis-
cuss some of the issues associated with visual quality assessment
and review a number of proposed quality metrics.

In order to be able to design reliable visual quality metrics, it
is necessary to understand what “quality” means to the viewer.
Viewers’ enjoyment when looking at an image or video depends
on many factors. One of the most important is of course the
content and material. Provided the content itself is at least
“watchable”, visual quality plays a prominent role. Research
has shown that perceived quality depends on viewing distance,
display size, resolution, brightness, contrast, sharpness, colorful-
ness, naturalness and other factors [2,60,75,99]. For video, the
accompanying sound also has great influence on perceived qual-
ity: subjective quality ratings are generally higher when the test
scenes are accompanied by a good quality sound program [96],
which apparently distracts the viewers’ attention from video
impairments.

It is also important to note that perceived quality is not nec-
essarily equivalent to fidelity, i.e. the accurate reproduction of
the original. For example, sharp images with high contrast are
usually more appealing to the average viewer [104]. Likewise,
subjects prefer slightly more colorful and saturated images de-
spite realizing that they look somewhat unnatural [22,152].

Most “quality” metrics are actually fidelity metrics based on
the comparison of the distorted image with a reference and ne-
glect these phenomena. The reason for this is that without any
reference it is very difficult for a metric to tell apart distortions
from desired content, whereas humans usually are able to make
this distinction from experience. The problem with this ap-
proach is that the reference may not be available, for example
at the receiver side of TV broadcasts or internet streaming. For
such applications, reduced-reference metrics are becoming very
important, which rely only on little pieces of information ex-
tracted from the reference to compute a quality measure. An ex-
ample is the metric presented in [147], which is discussed among
others in section V-F.

B. What performance can be expected from a quality metric?

The performance of a quality metric is usually evaluated with
the help of subjective ratings for a certain test set. A number
of different attributes can be considered in such an evaluation,
e.g. prediction accuracy (the average error), monotonicity (the
ordering of images according to their quality), and consistency
(the number of outliers). These attributes can be quantified
with mathematical tools such as regression analysis; correlations
are probably the most commonly used performance indicators.

However, as discussed above in section IV, perceived visual
quality is an inherently subjective measure and can only be
described statistically, i.e. by averaging over the opinions of a
sufficiently large number of observers. Therefore the question
is also how well subjects agree on the quality of a given image
or video. In a study carried out by the Video Quality Experts
Group [126] (see section V-G for details), DSCQS ratings were
collected for a large set of test sequences by several laboratories,
with each lab adhering to ITU-R Rec. 500 [52] for the viewing
setup and test conditions. The resulting correlations obtained
between the average ratings of viewer groups from different labs
are in the range of 0.9-0.95. While the exact figures certainly
vary depending on the application and the range of the test set,
this gives an indication of the limits of prediction performance
for quality metrics. In the same study, the best-performing
metrics only achieved correlations in the range of 0.8-0.85. This
shows that there still remains work to be done before quality
metrics can replace subjective tests.

C. Pizel-Based Metrics

The mean squared error (MSE) and the peak signal-to-noise
ratio (PSNR) are the most popular difference metrics in image
and video processing. The MSE is the mean of the squared
differences between the gray-level values of pixels in two pictures
or sequences I and I:

MSE = L DD WLERTEER? 0w

for pictures of size X XY and T frames in the sequence. The av-
erage difference per pixel is thus given by the root mean squared
error RMSE = vVMSE.

The PSNR in decibels is defined as:

m2

where m is the maximum value that a pixel can take (e.g. 255 for
8-bit images). Note that MSE and PSNR are well-defined only
for luminance information; once color comes into play, there is
no agreement on the computation of these measures.

Technically, MSE measures image difference, whereas PSNR
measures image fidelity, i.e. how closely an image resembles a
reference image, usually the uncorrupted original. The popu-
larity of these two metrics is due to the fact that minimizing
the MSE is equivalent to maximum likelihood estimation for
independent measurement errors with normal distribution. Be-
sides, computing MSE and PSNR is very easy and fast. Because
they are based on a pixel-by-pixel comparison of images, how-
ever, they only have a limited, approximate relationship with
the distortion or quality perceived by human observers. In cer-
tain situations the subjective image quality can be improved by
adding noise and thereby reducing the PSNR. Dithering of color
images with reduced color depth, which adds noise to the image
to remove the perceived banding caused by the color quantiza-
tion, is a common example of this. Furthermore, the visibility
of distortions depends to a great extent on the image content,
a property known as masking (see section III-E). Distortions
are often much more disturbing in relatively smooth areas of an
image than in texture regions with a lot of activity , an effect
not taken into account by pixel-based metrics. Therefore the
perceived quality of images with the same PSNR can actually
be very different (see Fig. 2).

A number of additional pixel-based metrics have been pro-
posed and tested [31]. It was found that although some of these
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Fig. 2. Two images with identical PSNR of 31.7 dB. The same amount
of noise has been added to a rectangular area at the top on the left
and at the bottom on the right. The noise is much more visible in the
sky than on the rocks and in the water due to strong masking, which
PSNR does not take into account.

metrics can predict subjective ratings quite successfully for a
given compression technique or type of distortion, they are not
reliable for evaluations across techniques. Another study con-
cluded that even perceptual weighting of MSE does not give
consistently reliable predictions of visual quality for different
pictures and scenes [74]. These results indicate that pixel-based
error measures are not accurate for quality evaluations across
different scenes or distortion types. Therefore it is imperative
for reliable quality metrics to consider the way the HVS pro-
cesses visual information.

In the following, we discuss the implementation and perfor-
mance of a variety of visual quality metrics. An overview of
these and other quality metrics can be found in Table I.

D. Single-Channel Models

The first models of human vision adopted a single-channel ap-
proach. Single-channel models regard the human visual system
as a single spatial filter, whose characteristics are defined by the
contrast sensitivity function. The output of such a system is the
filtered version of the input stimulus, and detectability depends
on a threshold criterion.

The first computational model of vision was designed by
Schade [105]. It is based on the assumption that the HV'S repre-
sentation is a shift-invariant transformation of the retinal image
and can thus be expressed as a convolution. In order to de-
termine the convolution kernel of this transformation, Schade
carried out psychophysical experiments to measure the CSF.
Schade’s model was able to predict the visibility of simple stim-
uli, but failed as the complexity of the patterns increased.

The first image quality metric for luminance images was de-
veloped by Mannos and Sakrison [73]. They realized that sim-
ple pixel-based distortion measures were not able to accurately
predict the quality differences perceived by observers. On the
basis of psychophysical experiments on the visibility of gratings,
they inferred some properties of the human visual system and
came up with a closed-form expression for the contrast sensitiv-
ity as a function of spatial frequency, which is still widely used
in HVS-models. The input images are filtered with this CSF
after a lightness nonlinearity. The squared difference between
the filter output for the two images is the distortion measure. It
was shown to correlate quite well with subjective ranking data.
Despite its simplicity, this metric was one of the first works
in engineering to recognize the importance of applying vision
science to image processing.

The first color image quality metric was proposed by Faugeras
[32]. His model computes the cone absorption rates and applies

a logarithmic nonlinearity to obtain the cone responses. An
achromatic and two chromatic color difference components are
calculated from linear combinations of the cone responses to
account for the opponent-color processes in the human visual
system. These opponent-color signals go through individual fil-
tering stages with the corresponding CSF’s. The squared dif-
ferences between the resulting filtered components for the ref-
erence image and for the distorted image are the basis for an
image distortion measure.

The first video quality metric was developed by Lukas and
Budrikis [71]. It is based on a spatio-temporal model of the
CSF using an excitatory and an inhibitory path. The two paths
are combined in a nonlinear way, enabling the model to adapt to
changes in the level of background luminance. Masking is also
incorporated into the model by means of a weighting function
derived from the spatial and temporal activity in the reference
sequence. In the final stage of the metric, an L,-norm of the
masked error signal is computed over blocks in the frame whose
size is chosen such that each block covers the size of the foveal
field of vision. The resulting distortion measure was shown to
outperform MSE as a predictor of perceived quality.

Tong et al. [117] recently proposed an interesting single-
channel video quality metric called ST-CIELAB (spatio-
temporal CIELAB). ST-CIELAB is an extension of the spa-
tial CIELAB (S-CIELAB) image quality metric [153]. Both are
backward compatible to the CIELAB standard, i.e. they reduce
to CIE L*a*b* for uniform color fields. The ST-CIELAB metric
is based on a spatial, temporal, and chromatic model of human
contrast sensitivity in an opponent-colors space, after which the
data are transformed to CIE L*a*b* space, whose difference for-
mula is used for pooling.

Single-channel models are still in use today because of their
relative simplicity and computational efficiency, and a variety
of extensions and improvements have been proposed. However,
they are intrinsically limited in prediction accuracy. They are
unable to cope with more complex patterns and cannot account
for empirical data from masking and pattern adaptation exper-
iments. These data can be explained quite successfully by a
multi-resolution theory of vision, which assumes a whole set of
different channels instead of just one (cf. section II1I-B). The
corresponding multi-channel models and metrics are discussed
in the next section.

E. Multi-Channel Models

Multi-channel models assume that each band of spatial fre-
quencies is dealt with by an independent channel. The CSF
is just the envelope of the sensitivities of these channels. De-
tection occurs independently in any channel when the signal in
that band reaches a threshold criterion.

A well-known image distortion metric, the Visual Differences
Predictor (VDP), was proposed by Daly [18]. The underlying
vision model includes an amplitude nonlinearity to account for
the adaptation of the visual system to different light levels, an
orientation-dependent CSF, and a hierarchy of detection mecha-
nisms. These mechanisms involve a decomposition similar to the
cortex transform [128] and a simple intra-channel masking func-
tion. The responses in the different channels are converted to
detection probabilities by means of a psychometric function and
finally combined according to rules of probability summation.
The resulting output of the VDP is a visibility map indicating
the areas where two images differ in a perceptual sense.

Lubin [69] designed an elaborate visual discrimination model
for measuring still image fidelity, which is also known as the
Sarnoff Visual Discrimination Model (VDM). First the input
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images are convolved with an approximation of the point spread
function of the eye’s optics. Then the sampling by the cone
mosaic in the retina is simulated. The decomposition stage im-
plements a Laplacian pyramid for spatial frequency separation,
local contrast computation, as well as directional filtering, from
which a phase-independent contrast energy measure is calcu-
lated. This contrast energy measure is subjected to a masking
stage, which comprises a normalization process and a sigmoid
nonlinearity. Finally, a distance measure or JND map is com-
puted as the Lp-norm of the masked responses. The VDM is
one of the few models that take into account the eccentricity of
the images in the observer’s visual field. It was later modified
to the Sarnoff JND metric for color video [70].

An interesting distortion metric for still images was presented
by Teo and Heeger [114,115]. It is based on the response prop-
erties of neurons in the primary visual cortex and the psy-
chophysics of spatial pattern detection. The model was inspired
by analyses of the responses of single neurons in the visual cor-
tex of the cat [5,48,49], where a so-called contrast gain control
mechanism keeps neural responses within the permissible dy-
namic range while at the same time retaining global pattern
information. In the metric, contrast gain control is realized by
an excitatory nonlinearity that is normalized by a pool of in-
hibitory responses from other neurons. The distortion measure
is then computed from the resulting normalized responses by a
simple squared-error norm. Contrast gain control models have
become quite popular, and have been generalized in recent years
[28,39,136,144].

Van den Branden Lambrecht proposed a number of video
quality metrics based on multi-channel vision models [121]. The
Moving Picture Quality Metric (MPQM) is based on a local con-
trast definition and Gabor-related filters for the spatial decom-
position, two temporal mechanisms, as well as a spatio-temporal
CSF and a simple intra-channel model of contrast masking [122].
A color version of the MPQM based on an opponent-colors space
was presented as well as a variety of applications and extensions
of the MPQM [121], e.g. for assessing the quality of certain im-
age features such as contours, textures, and blocking artifacts,
or the study of motion rendition [123]. Due to the MPQM’s
purely frequency-domain implementation of the spatio-temporal
filtering process and the resulting huge memory requirements,
it is not practical for measuring the quality of sequences with a
duration of more than a few seconds, however. The Normaliza-
tion Video Fidelity Metric (NVFM) [67] avoids this shortcom-
ing by using a steerable pyramid transform for spatial filtering
and discrete time-domain filter approximations of the tempo-
ral mechanisms. It is a spatio-temporal extension of Teo and
Heeger’s above-mentioned image distortion metric.

Winkler [144] presented a perceptual distortion metric (PDM)
for color video. It is based on the NVFM and a model for color
images [142]. After conversion of the input to an opponent col-
ors space, each of the resulting three components is subjected
to a spatio-temporal decomposition by the steerable pyramid,
yielding a number of perceptual channels. They are weighted ac-
cording to spatio-temporal contrast sensitivity data and subse-
quently undergo a contrast gain control stage for pattern mask-
ing. Finally, the sensor differences are combined by means of
an Lp-norm into visibility maps or a distortion measure. The
performance of the metric is discussed in [145].

F. Specialized Metrics

Metrics based on multi-channel vision models such as the ones
presented above in section V-E are the most general and poten-
tially the most accurate ones [143]. However, quality metrics

need not necessarily rely on sophisticated general models of the
human visual system; they can exploit a priori knowledge about
the compression algorithm and the pertinent types of artifacts
using ad-hoc techniques or specialized vision models. While
such metrics are not as versatile, they normally perform well in
a given application area. Their main advantage lies in the fact
that they often permit a computationally more efficient imple-
mentation.

One example of such specialized metrics is DCTune [133,134],
which was developed as a method for optimizing JPEG image
compression (see section VI-E.1 for details), but can also be
used as a quality metric. Watson [135] recently extended the
latter to video. In addition to the spatial sensitivity and mask-
ing effects considered in DCTune, this so-called Digital Video
Quality (DVQ) metric relies on measurements of the visibility
thresholds for temporally varying DCT quantization noise. It
also models temporal forward masking effects by means of a
masking sequence, which is produced by passing the reference
through a temporal low-pass filter. A report of the DV(Q met-
ric’s performance is given in [139].

Wolf and Pinson [147] designed a video distortion metric that
uses reduced reference information in the form of low-level fea-
tures extracted from spatio-temporal blocks of the sequences.
These features were selected empirically from a number of can-
didates so as to yield the best correlation with subjective data.
First, horizontal and vertical edge enhancement filters are ap-
plied to facilitate gradient computation in the feature extraction
stage. The resulting sequences are divided into spatio-temporal
blocks. A number of features measuring the amount and ori-
entation of activity in each of these blocks are then computed
from the spatial luminance gradient. To measure the distortion,
the features from the reference and the distorted sequence are
compared using a process similar to masking.

Hamada et al. [47] proposed a picture quality assessment sys-
tem based on a perceptual weighting of the coding noise. In
their three-layered design, typical noise types from the compres-
sion are classified and weighted according to their characteris-
tics. The local texture is analyzed to compute the local degree
of masking. Finally, a gaze prediction stage is used to empha-
size noise visibility in and around objects of interest. The PSNR
computed on the weighted noise is used as distortion measure.
This metric has been implemented in a system that permits
real-time video quality assessment.

Tan et al. [112] presented an objective measurement tool for
MPEG video quality. It first computes the perceptual impair-
ment in each frame based on contrast sensitivity and masking
with the help of spatial filtering and Sobel-operators, respec-
tively. Then the PSNR of the masked error signal is calculated
and normalized. The interesting part of this metric is its second
stage, a cognitive emulator, that simulates higher-level aspects
of perception. This includes the delay and temporal smoothing
effect of observer responses, the nonlinear saturation of per-
ceived quality, and the asymmetric behavior with respect to
quality changes from bad to good and vice versa. This metric
is one of the few models targeted at measuring the temporally
varying quality of video sequences. While it still requires the
reference as input, the cognitive emulator was shown to improve
the predictions of subjects’ SSCQE ratings.

G. Metric Comparisons

While video quality metric designs and implementations
abound, only few comparative studies exist that have inves-
tigated the prediction accuracy of metrics in relation to others.

Ahumada [1] reviewed more than 30 visual discrimination


https://www.researchgate.net/publication/284573451_Normalization_of_cell_responses_in_cat_striate_cortex?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/278914324_Picture_Quality_Assessment_System_by_Three-Layered_Bottom-Up_Noise_Weighting_considering_Human_Visual_Perception?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/243786600_Image_Data_Compression_having_Minimum_Perceptual_Error?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/243768779_Toward_a_perceptual_video_quality_metric?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/242608444_Spatial-temporal_distortion_metric_for_in-service_quality_monitoring_of_any_digital_video_system?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/239064533_Sarno_JND_Vision_Model?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/224076297_A_perceptual_distortion_metric_for_digital_color_images?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/223836167_Issues_in_vision_modeling_for_perceptual_video_quality_assessment?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/220226336_An_objective_measurement_tool_for_MPEG_video_quality?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/37412274_Perceptual_models_and_architectures_for_video_coding_applications?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/37412274_Perceptual_models_and_architectures_for_video_coding_applications?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/21705818_Half-squaring_in_response_of_cat_striate_cells?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/13928808_Model_of_visual_contrast_gain_control_and_pattern_masking?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/12360628_Normalization_contrast-gain_control_in_simple_Fourier_and_complex_non-Fourier_pathways_of_pattern_vision?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/3671634_Efficient_spatio-temporal_decomposition_for_perceptual_processing_of_video_sequences?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/3612079_Perceptual_Image_Distortion?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/null?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/null?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/null?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=
https://www.researchgate.net/publication/null?el=1_x_8&enrichId=rgreq-95b2fe5bc6de6af69f37f8bed9c9e33c-XXX&enrichSource=Y292ZXJQYWdlOzI5MTYxNzQ7QVM6MTQxOTgyNzQzNjY2Njk4QDE0MTA4NjI3MzI4MDc=

models for still images from the application areas of image qual-
ity assessment, image compression and halftoning. However,
only a comparison of the implementations of their computa-
tional models is given; the performance of the metrics is not
evaluated.

Comparisons of several image quality metrics with respect to
their prediction performance were carried out in [30,34,53,66,76,
97]. These studies consider many different pixel-based metrics
as well as a number of single-channel and multi-channel models
from the literature. Summarizing their findings and drawing
overall conclusions is made difficult by the fact that test im-
ages, testing procedures, and applications differ greatly between
studies. It can be noted that certain pixel-based metrics in the
evaluations correlate quite well with subjective ratings for some
test sets, especially for a given type of distortion or scene. They
can be outperformed by vision-based metrics, where more com-
plexity usually means more generality and accuracy. However,
the observed gains are often so little that the computational
overhead does not seem justified.

Objective measures of MPEG video quality were validated by
Cermak et al. [16]. However, this comparison does not consider
entire quality metrics, but only a number of low-level features
such as edge energy or motion energy and combinations thereof.

The most ambitious performance evaluation of video quality
metrics to date was undertaken by the Video Quality Experts
Group (VQEG).! The group was formed in 1997 with the ob-
jective to collect reliable subjective ratings for a well-defined
set of test sequences and to evaluate the performance of dif-
ferent video quality assessment systems with respect to these
sequences. Its work and findings are described in detail in the
VQEG Report [126] and by Rohaly et al. [98].

The emphasis of the VQEG study was out-of-service test-
ing (the full reference sequence is available to the metrics) of
production- and distribution-class video. Therefore, the test
conditions comprised mainly MPEG-2 encoded sequences, in-
cluding conversions between analog and digital video or trans-
mission errors. In total, 20 scenes were encoded for 16 test
conditions each. Subjective ratings for these sequences were
collected in large-scale experiments using the DSCQS method
(see section IV) from ITU-R Rec. 500 [52]. Ten different video
quality metrics were submitted for evaluation. Most of them be-
long to the category of specialized metrics, the rest is based on
multi-channel HVS-models. The selected scenes were disclosed
to the proponents only after the submission of their metrics.

The statistical methods used for the performance analysis
were variance-weighted regression, nonlinear regression, Spear-
man rank-order correlation, and outlier ratio [98]. The results
of the data analysis show that the performance of most models
as well as PSNR are statistically equivalent for all four criteria,
leading to the conclusion that no single model outperforms the
others in all cases and for the entire range of test sequences.
Furthermore, none of the metrics achieved an accuracy compa-
rable to the agreement between different subject groups.

PSNR entschaerfen...

VI. IMAGE COMPRESSION

A. How is the HVS related to image compression?

Image data can be stored in various formats. The typical
24 bits-per-pixel (bpp) red-green-blue (RGB) representation is
well suited for displaying the image, but very data intensive.
Compression schemes usually transform these data into a more

L See http: //www.crc.ca/vqeg/ for an overview of its current activities.

efficient representation. If this transformation is entirely re-
versible and the initial data can be perfectly reconstructed, one
speaks of lossless compression. Typical compression ratios for
lossless compression of natural images are close to 2-3:1 [103].
If higher compression ratios are desired, a certain information
loss has to be accepted, which is referred to as lossy compres-
sion. However, this loss need not be visible, because it might
introduce only slight changes in the image that are below the
perception threshold (visually lossless compression). For even
higher compression ratios the visual appearance of the image
changes compared to the original. Thus, compression artifacts
or image distortions are introduced. The objective of incorpo-
rating an HVS-model into a compression scheme is to minimize
these distortions and to achieve the best visual quality for a
given bitrate.

HVS
HVS
RGB-image
g Bitstream
Transfor- || i || Entropy-
mation Cllantization Coding 0“““1"

Fig. 3. Three main stages of image compression

The process of image compression can be described by three
separate stages, as illustrated in Fig. 3. The image is trans-
formed into the compression domain, where it is represented
by its transform coefficients. These coefficients are then quan-
tized and entropy-coded to create the compressed bitstream. In
recent image compression schemes, the stages of quantization
and entropy coding are typically controlled by a so-called Rate-
Distortion (RD) unit. This unit allocates a specific quantization
precision to each coefficient, so that the resulting overall qual-
ity of the compressed image is optimized for the given bitrate.
Ideally, this means that the final bitstream contains only in-
formation about visually important transform coefficients and
none about the rest.

The HVS-model influences the design of a compression
scheme at two stages, namely the transformation and the RD-
unit. First, the image data should be transformed into a visually
meaningful representation. Only then it is guaranteed that the
final visual quality can be well controlled. Second, the visibility
of the compression-related distortions needs to be measured and
controlled by the RD-unit.

B. How much quality improvement can be expected?

The impact of HVS-models on compression quality is demon-
strated in Fig. 4. The original image was compressed with the
most recent image compression standard, JPEG2000 (see sec-
tion VI-F.2), once in its plain version that optimizes the MSE,
and once exploiting an integrated HVS-model. To facilitate the
comparison, a magnified region is shown. Even if the visual
difference is reduced by the print quality, the benefits of HVS-
based compression are clearly visible. In the MSE-optimized
image, the entire texture of the face is lost, while it is preserved
in the HVS-compressed image. Why does the MSE-scheme per-
forms so badly at the same bitrate?

The reason for this remarkable difference in quality is that
the MSE-optimized scheme spends many bits in places that do
not contribute to a visual improvement, but only to a minimiza-
tion of the mathematical error measure. While the missing skin
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Fig. 4. Sub-images (a) and (b) show the original image and a magnified
sub-region. The magnification of the compression result for the con-
ventional JPEG 2000 (c) and the HVS-based codec (d) demonstrate
clearly the visual impact.

texture appears blurred and unnatural to a human observer,
it is not very important from the point of view of MSE opti-
mization, which instead puts more than necessary weight on the
exact reproduction of spatial detail, e.g. in the wreath and hair
of the woman. However, the human observer is less sensitive to
a quality degradation in these regions, because it is masked by
the strong textures. Consequently, many of the bits that are
allocated there are wasted.

It is difficult to give precise numbers for the impact of HVS-
based image compression, because they vary from one image to
another, and only very few authors evaluated the performance
increase in a quantitative way. The comparison of entire HVS-
based codecs is even more difficult, because not only the HVS-
model, but also the entire coding process is different. Some esti-
mates can be given nonetheless. Already incorporating the CSF
into the JPEG2000 codec leads for visually-lossless compression
to an approximately 30% higher compression ratio [82, 83, 85].
Simple masking models increase the correctness of the HVS-
based predictions, whether a coding artifact is visible or not, by
50% [84]. Further improvements can be obtained by a combina-
tion with model-based texture coding, which deceives the HVS
with its synthesized textures. Thus, a MSE-based compression
scheme has approximately to double the bitrate with respect to
an HVS-based scheme to achieve the same visual quality. So far
only relative improvements were considered. In absolute terms
this means that an A4-format color image at 300 dpi can be
compressed at visually lossless quality at compression ratios of
80:1 to 100:1 (for 24bit images 0.3 - 0.24bpp).

C. Does a general HVS-model parameterization exist?

As mentioned before, human visual perception is highly adap-
tive, but also very dependent on certain parameters such as color
and intensity of ambient lighting, viewing distance, media res-

olution, and others. It is possible to design HVS-models that
try to meticulously incorporate all of these parameters. The
problem with this approach is that the model becomes tuned to
very specific situations, which is generally not practical, because
some viewing parameters may not be known in advance.

However, looking at the examples in Figs. 2 and 4, the qual-
ity differences remain, even if the viewing parameters such as
background light or viewing distance are changed. It is clear
that one will no longer be able to distinguish them from three
meters away. That is where lies the answer to the problem:
It is necessary to make realistic assumptions about the typical
viewing conditions, and to derive from them a good model pa-
rameterization, which can actually work for a wide variety of
situations.

D. How much additional complezity does the HVS-model re-
quire?

It is instructive to discuss the question of complexity sepa-
rately for each stage of the HVS-model shown in Fig. 1. The
color space transformation might be extended by a lightness
non-linearity. However, the gamma correction is already a non-
linearity of the same type and can easily be implemented by a
look-up table. As a space-frequency decomposition, the stan-
dard discrete wavelet transform (DWT) of the compression algo-
rithm can be well utilized by an HVS-model, hence no additional
complexity is added at this stage. Local background adaptation
and contrast computation typically increase the complexity by
an additional division per coefficient. What is more annoying
is the more complex memory access required and the increased
total amount of buffer memory, because it is necessary to access
data from other decomposition levels. The CSF can be imple-
mented by a single weighting factor per subband in its simplest
form, which is negligible in terms of computational complexity.
If an adaptive CSF filtering is chosen, an additional FIR filter
operation has to be applied to about 25% of all coefficients [85].
The masking stage can be the most expensive one computa-
tionally. If only point-wise contrast masking is implemented, a
simple compressor function is sufficient. If the local surround
is considered as well, a power function and an additional sum-
mation are required for every coefficient of the local surround.
Since this local surround behaves like a sliding window, sig-
nificant complexity savings can be achieved. For inter-channel
masking models, the computational and memory complexity in-
crease significantly. In the pooling stage, the power function is
implemented most efficiently for a power of 2. Otherwise it does
not imply additional complexity, since the total error has to be
pooled for an MSE metric as well.

E. Review of HVS-based Codecs

We now review various HVS-based codecs and related studies.
The different schemes are grouped by their spatial-frequency
decomposition method.

Readers who are less familiar with image compression might
appreciate the introductory papers by Podilchuk and Safranek
[94] and Jayant et al. [55]. The first is not specifically focused on
HVS-based compression, but provides a good overview of image
and video compression in general. It explains the concept of
transform coding schemes like DCT or DWT and discusses the
advantages of multi-resolution techniques. A number of stan-
dards for image and video compression are also introduced. The
second provides a general reflection on the concept of percep-
tual image coding. It presents the basic structure of a percep-
tual codec and points out that at the present time no optimal
perceptual codec exists; all codecs found in the literature are
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rather empirical approximations.

E.1 Fourier or DCT-based Schemes

The early work of Hall [46] presents a compression scheme
that processes the input image in a non-reversible manner to
obtain the “visual image content”, which is encoded in the
Fourier domain. First, the input image is filtered by a spa-
tial low-pass that simulates the modulation transfer function
of the eye. Then, the three color channels corresponding to
the photoreceptors are simulated by separate CSF low-pass and
spectral band-pass filters. A logarithmic point nonlinearity and
another high-pass filter implement lightness perception and the
lateral inhibition. The bitrate-allocation is related to the local
variance as an estimation of visual information content. The
final performance of the scheme is evaluated by a subjective
quality ranking. The scheme appears quite complete, but has
some significant drawbacks. All filters are directly applied to
the coefficients, which implies that the initial image content is
irreversibly modified before any coding is applied. Lossless cod-
ing is thus made impossible, and any change of the assumed
viewing conditions (magnification) cannot be compensated by
further decoding of the progressively encoded bitstream. Fur-
thermore, the arithmetic complexity is rather high.

Many perceptual optimizations are based on a modification
of the quantization matrix of the DCT-based JPEG encoder
(cf. section VI-F.1). Klein et al. [59] discuss how an HVS-
model can be tailored to compute such a quantization matrix
by considering primarily the CSF. Issues such as the orienta-
tion dependence of the CSF and the inter-dependence of the
64 DCT coefficients are investigated. Moreover, the significant
difficulty of implementing masking models in a DCT-scheme is
underlined. This work also establishes a good link to relevant
psychophysics literature through numerous references.

Watson [133,134] integrated an HVS-model into a DCT-based
codec called DCTune,? for which he analyzed the visibility of
DCT quantization noise with respect to display resolution, con-
trast masking, frequency and spatial summation. He demon-
strates how the quantization matrix can be perceptually opti-
mized for individual gray-level images [131]. In [132] an exten-
sion for color images is described. However, it is very basic and
not really based on color CSF data. Therefore, the compressed
images often suffer from color artifacts.

Westen et al. [141] developed an HVS-model that first trans-
forms the image into an opponent color space. Then, a variant of
the steerable filter pyramid is applied to decompose the image in
an over-complete fashion into several frequency bands with four
different orientations. Finally, local background adaptation,
CSF and masking effects are modeled to compute a weighted
mean squared error (WMSE). Using this data intensive model,
JPEG quantization matrices are computed for each DCT block
by establishing a link between the DCT coefficients and the
WMSE.

Tong et al. [116] scale the default JPEG quantization matrix
by a locally-adaptive factor that accounts for the masking due
to texture and luminance. The technique uses specific DCT
coefficients of the 8x8 block to classify the entire block as plain,
edge or texture region. Depending on the classification, another
scaling factor is determined. The model is finally implemented
in a mode conforming to the baseline JPEG standard and as a
version extending the standard. The method is only encoder-
bound and achieves 5-22% of bitrate savings on a test set of 17
natural images, while increasing the complexity by 10%.

2 A demonstration version of DCTune can be downloaded from

http: //vision.arc.nasa.gov/dctune/.

Drukarev [26] analyzes the compression performance in 8 dif-
ferent commonly used color spaces. Particular attention is paid
to the influence of gamma correction. The observations are an-
alyzed based on objective criteria like energy compaction. The
compression performance was primarily measured by PSNR,
but some subjective evaluations are reported also.

E.2 DWT-based Schemes

Various compression schemes employ the discrete wavelet
decomposition (DWT) in combination with an HVS-model.
Safranek et al. [101] propose a perceptually tuned subband
coder that decomposes an image in YIQ-space into 16 subbands
per color channel by a generalized quadrature mirror filter bank.
The coefficients are quantized based on an empirically derived
masking model that uses the local variance as an indicator for
texture masking. The output of a DPCM quantizer is then
Huffman encoded. The perceptual model consists of base sensi-
tivity, brightness and texture correction. The base sensitivity is
determined by experiments using artificially generated noise sig-
nals and approximates the CSF. In a similar way, the influence
of the background brightness is evaluated. The performance is
described as “good”, but no quantitative subjective results are
given.

Lai and Kuo applied a simplified version of their HVS-based
quality metric [64] to a wavelet coding scheme [63]. The HVS-
model uses an opponent color space and determines the local
contrast based on the Haar wavelet coefficients. The initial
HVS-model of the quality metric implements a luminance CSF
and an inter-channel masking model that considers contrast and
frequency masking. The final quality gain is discussed based on
some coding examples. Unfortunately, the entire model is based
on measurements by the authors that are not well documented.
It is also unclear how the frequency weighting of the chromi-
nance channels is implemented. In the compression scheme,
the HVS-model sacrifices the masking stage to enable embed-
ded encoding and to reduce the complexity. Thus, only a CSF
frequency weighting is implemented.

Bao and Leung [8] present a subband codec that implements
a spatial frequency weighting and an edge preserving technique.
The wavelet coefficients in each subband are weighted by a single
invariant factor that is computed from the CSF in [73]. Edges
are extracted directly from the input image using a Canny-
operator. Finally, a map of the visually significant edges is
created by fuzzy-logic. This map is used to weight the wavelet
coefficients that are quantized and encoded using run-length
and arithmetic coders. The obtained compression quality is
measured in terms of PSNR. It achieves values equivalent to
the SPIHT-codec [102], but the visual quality is found to be
superior. This work follows the interesting idea of treating the
edge information separately, but suffers from an empirical for-
mulation of the visibility model.

Truchetet et al. [118] present a concept to remove specific
coefficients of a wavelet packet decomposition before their en-
tropy encoding. The criterion whether a coefficient is removed
or not is based on very basic empirical experiments using three
different images. The entropy of the wavelet packet representa-
tion pruned in this fashion is computed to estimate the achieved
compression ratio. The scheme uses a linear transformation to
an opponent color space and an orthonormal B-spline filter of 23
taps. Its complexity is rather low, since it either suppresses or
retains a coefficient, which comes down to an elementary quan-
tization strategy. The performance is rather poor, however:
visually lossless compression for color images is only reached at
a compression ratio of 10:1.
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Watson et al. [138] carried out an analysis that is directly
related to HVS-based subband decomposition. Artificial noise
signals and single basis functions were created in the wavelet do-
main to measure their visibility after reconstruction. All signals
were created in the separate decomposition channels of YCpCr
space. Based on the experimental results, perceptual weighting
factors for a four-level decomposition with the 9/7 Daubechies
wavelet filter in this color space were determined, which can be
used for perceptually optimized quantization.

Nadenau and Reichel proposed a new way to implement the
CSF [81, 83, 85] using a filtering operation instead of a simple
weighting in the wavelet domain. This provides an optimal
adaptation of the CSF weighting to the local characteristics
(spatial power spectrum) and can be combined with JPEG2000
in an encoder-bound technique while preserving lossless cod-
ing properties. In [82] it is investigated which color space is
best suited for an HVS-model that provides an optimal data-
decorrelation for DWT-based image compression. Three very
different opponent color spaces are examined regarding their
performance within the JPEG2000 codec. A detailed analysis
is carried out using subjective ratings, and the observed per-
formance is explained by various objective criteria like inter-
coefficient or inter-color-channel correlations.

Finally, the same authors studied the performance of differ-
ent masking models for DWT-based compression [84]. They
used natural scenery stimuli and analyzed the models’ predic-
tion performance, reliability and sensitivity to slightly changed
parameters. The psychophysical test setup was intentionally
close to the DWT-compression structure, so that the obtained
results can be used directly for compression purposes.

E.3 DCT-DWT Comparison

It is often argued which decomposition structure is better for
compression, DCT or DWT. Eckert [29] presents a comparative
analysis of wavelets, block DCT and lapped orthogonal trans-
forms. He compares their visual compression performance by
applying modified versions of the HVS model by Watson [131]
to each of these decomposition structures. The SPIHT approach
[102] is included as a non-HVS reference scheme. The results
show that the DCT scheme exhibits the best visual quality and
SPIHT the worst. The authors explain the inferior performance
of the wavelet-codec with the sub-optimal arrangement of the
data for the entropy coding step. The study revealed that the
HVS-model applied to wavelet data was more correlated with
subjective impression than the one in combination with the
DCT.

Jones et al. [56] compared the performance of a wavelet-based
and a DCT-based codec for medical image compression. They
implemented the CSF by means of a single factor frequency
weighting in both codecs. Since the DCT-based approach does
not allow to exploit local masking properties, they omitted
this feature for the wavelet scheme as well. Nevertheless, the
wavelet-based codec is found to offer the absence of blocking
and the exploitation of masking as potential advantages. Its
only drawback is the coarser precision of the CSF implementa-
tion (typically one weighting factors per subband, instead of one
per DCT-coefficient in the 8 by 8 block). Both coding methods
are compared by evaluating the entropy of the quantized coeffi-
cients at visually lossless quality. Recently, the problem of the
coarser CSF control has been solved [85], which gives a clear
advantage to the DWT.
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E.4 Other Decomposition Structures

A number of other decomposition structures have been pro-
posed aside from the commonly used DCT and DWT. Watson
[129] suggested using the cortex transform [128] for compression
purposes. The transform coefficients are sampled and quantized
based on an intra-channel contrast masking model. The entropy
of the final data is measured to estimate a lower bound for the
coding rate. Visually lossless coding is achieved for approxi-
mately 1 bpp. He also proposed an extension to video coding
by separating static and motion channels [130], which has never
been implemented and tested, however.

Van Dyck and Rajala [27] propose a subband codec in com-
bination with vector quantization. Instead of a typical wavelet
decomposition it uses one that delivers diagonally structured
subbands. They argue that this decomposition structure better
accounts for the lower sensitivity to diagonally oriented edges.
In the end, however, the compression performance is inferior to
the one of standard rectangular subband decompositions, while
the complexity is significantly increased. Moreover, features like
lossless coding can no longer be realized.

O’Rourke and Stevenson [87] also present a subband codec
that uses vector quantization together with an HVS-model to
control bit allocation. Within the same coding scheme they
compare a separable, a non-separable and a newly proposed
diagonal decomposition structure. The argument for the di-
agonally oriented decomposition is that the quantization arti-
facts will also be oriented diagonally and thus less visible, due
to the reduced human sensitivity for diagonal stimuli. How-
ever, for normal-length decomposition filters, the non-separable
decomposition is found to outperform the diagonal one. For
long filters, the separable decomposition performs worse. The
bit allocation uses a simple CSF weighting for all three struc-
tures. For decent compression ratios (0.9 bpp), standard JPEG
performs better than the proposed scheme and is significantly
cheaper in terms of complexity. For very high compression the
quality judgment becomes very subjective. In general, blocking
artifacts (JPEG) appear less natural and more annoying than
ringing artifacts (wavelet codec).

Albanesi and Bertoluzza [4,11] did not modify the quanti-
zation or bit allocation stages. Instead, they designed new
HVS-based wavelet filters so that the resulting low-frequency
representation (approximation subband) is closest to the origi-
nal, measured by means of a CSF-weighted MSE. The idea of
directly modified filters is good, but it is insufficient to consider
only an improved approximation subband. Also the quantiza-
tion noise of the high-frequency coefficients in the detail sub-
bands needs to be considered by the CSF. Moreover, the new
filters are not necessarily stable. A similar modification of the
DCT was also presented by Nill [86].

F. HVS in Still Image Compression Standards

Basically, two standards exist for the compression of photo-
realistic images, namely JPEG (Joint Picture Experts Group)
and JPEG2000 (currently available is the Final Committee
Draft).® Both of them include certain features that can be used
to perceptually optimize the compression result. However, these
features are not activated by default, and it is up to the final
user to supply the required HVS-parameter files. This is the
main reason why the standards are normally used without any
visual optimization setting in their “plain” version.

3 See http: //www.jpeg.org/ for an overview of current activities.
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F.1 JPEG

The JPEG standard [93] is based on the DCT computed on
88 blocks. The HVS is typically integrated via the 8x8 quan-
tization table, whose entries specify the quantization step size.
A proper design of the quantization table is difficult; some at-
tempts were discussed in section VI-E.1 above. Even if the
control over the CSF frequency weighting is relatively precise,
it is quite difficult to implement its orientation-dependency [59].
Moreover, any masking implementation can only be based on
the spatial information that is given by the position of the entire
8% 8 coding block. Therefore, a pixel-wise modeling of contrast
masking is impossible, but masking effects like texture masking
that concern an entire sub-region can be modeled. Typically,
this requires local adaptation and thus a locally varying quan-
tization table. Even if the standard supports this feature, it is
very coding-expensive, because all the quantization tables have
to be transmitted within the bitstream. The standard itself
recommends a particular quantization table in Annex K.1 [92],
which is designed for a luminance-chrominance separated color
space.

F.2 JPEG2000

The JPEG2000 standard [51] is DWT-based and attaches par-
ticular importance on functionalities such as progressive coding,
lossless coding and scalability. The quantization of the coeffi-
cients is implemented as successive approximations. For HVS
integration, part 1 of the standard offers only the specifica-
tion of a single perceptual CSF weight per subband. Part 2
also includes features to incorporate a coefficient-wise contrast
masking function. However, the main advantage for HVS im-
plementation in JPEG2000 lies in its multi-resolution decompo-
sition structure and the post-compression rate-allocation [113],
which allows to compute any distortion function based on the
decomposition coefficients. Hence, it is possible to implement
an entire HVS-model that uses the wavelet decomposition as
input information and to influence the progressively encoded
bitstream such that visually important information is encoded
first. Even if the control over this ordering is of limited preci-
sion, it is typically sufficient as long as the images are not too
small. Additionally, this allows an asymmetric complexity bal-
ance, because the HVS implementation affects only the encoder
side.

VII. CONCLUSIONS

Many image processing applications can be optimized by a
measure of visual quality. Often this measure is realized by
inadequate pixel-based difference metrics like MSE. We have
attempted to show that significant improvements can be ob-
tained by using metrics based on HVS-models instead. Those
HVS-models are summarized in table I. However, the develop-
ment of computational HVS-models is still in its infancy, and
many issues remain to be investigated and solved.

First of all, more comparative analysis is necessary in order
to determine the most promising modeling approaches. The
collaborative efforts of Modelfest [15] or VQEG [126] represent
important steps in the right direction. Even if the former con-
cerns low-level vision and the latter entire video quality assess-
ment systems, both share the idea of applying different models
to the same set of subjective data. For compression schemes,
it is important to choose a standard codec, e.g. JPEG2000, to
facilitate the comparison of the results.

Furthermore, more psychophysical experiments (especially on
masking) need to be done with natural images. The use of
simple test patterns like Gabor patches or noise patterns may
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be appropriate for elementary experiments. However, they are
probably insufficient for the modeling of more complex phenom-
ena that occur in natural images.

Similarly, most psychophysical experiments focus on measure-
ments at the threshold level, whereas quality metrics and com-
pression are often applied above threshold. This obvious dis-
crepancy has to be overcome by strongly intensified efforts with
supra-threshold experiments, otherwise the metrics run the risk
of being nothing else than extrapolation guesses.

Finally, the particularities of color are often neglected and
have not received much attention so far. Effects like chromi-
nance masking should be investigated more intensively, and new
color spaces need to be derived that consider spatial aspects and
energy compaction.

As these items show, the remaining tasks in HVS-research are
challenging and need to solved by close collaboration of experts
in psychophysics, color science and image processing.
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