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a b s t r a c t

Accurate measurement of the perceived quality of audio–visual services at the end-user

is becoming a crucial issue in digital applications due to the growing demand for

compression and transmission of audio–visual services over communication networks.

Content providers strive to offer the best quality of experience for customers linked to

their different quality of service (QoS) solutions. Therefore, developing accurate,

perceptual-based quality metrics is a key requirement in multimedia services. In this

paper, we survey state-of-the-art signal-driven perceptual audio and video quality

assessment methods independently, and investigate relevant issues in developing joint

audio–visual quality metrics. Experiments with respect to subjective quality results

have been conducted for analyzing and comparing the performance of the quality

metrics. We consider emerging trends in audio–visual quality assessment, and propose

feasible solutions for future work in perceptual-based audio–visual quality metrics.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Multimedia services are experiencing a tremendous
growth in popularity recently due to the evolution of digital
communication systems. Two main media modalities,
namely audio and video signals constitute the core content
in most digital systems. Quality of audio–visual signals can
be degraded during lossy compression and transmission
through error-prone communication networks. Conse-

quently, accurately measuring the quality of distorted
audio–visual signals plays an important role in digital
applications, for example, when evaluating the performance
of codecs and networks, helping to improve the coding
abilities or adjusting network settings based on a strategy of
maximizing the perceived quality at the end-user.

Subjective assessment of audio–visual quality is
considered to be the most accurate method reflecting
the human perception [1]. It is, however, time-consuming
and cannot be done in real time. Thus, the International
Telecommunication Union (ITU) has released require-
ments for an objective perceptual multimedia quality
model [2]. Currently, most studies regarding the under-
standing of human quality perception of multimedia
systems have focused on individual modalities, i.e., audio
and video separately. These investigations have led to a
considerable progress in developing objective models
based on the human perceptual system for both audio
and video. A brief introduction to signal-driven audio and
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video quality metrics is given in the following paragraphs
and the main focus of this paper is on full reference
quality models for general audio and video signals.

1.1. Audio quality assessment

Perceptual audio quality assessment has been investi-
gated for several decades. Most audio quality models are
designed for handling coding distortions only. This paper
will also focus on audio quality metrics for coding
distortions. Traditional objective measurement methods,
such as signal-to-noise ratio (SNR) or total harmonic
distortion (THD), have never really been shown to relate
reliably to the perceived audio quality. A number of
methods for making objective perceptual assessment of
audio quality have been developed as the ITU identified an
urgent need to establish a standard in this area. The level-
difference between the masked threshold and the noise
signal is evaluated in a noise-to-masked ratio (NMR)
measurement method presented by Brandenburg [3]. In
the method proposed by Beerends and Stemerdink. [4], the
difference in intracranial representations of the reference
and distorted audio signals was transformed with a
cognitive mapping to the subjective perceptual audio
quality. A perceptual evaluation developed by Paillard
et al. [5] first modeled the transfer characteristics of the
middle and inner ear to form an internal representation
inside the head of the subject, which is an estimate of the
information being available to the human brain for
comparison of signals, and the difference between the
representations of the reference and distorted signals was
taken as a perceptual quality. By comparing internal basilar
representation of the reference and distorted signals, a
perceptual objective measurement (POM) proposed by
Colomes and Rault. [6] quantified a certain amount of
degradations including the probability of detecting a
distortion and a so-called basilar distance. Sporer intro-
duced a filter bank with 241 filters to analyze and compare
the reference and distorted signals in [7]. A perceptual
measurement method (DIX: disturbance index) proposed
by Thiede and Kabit. [8] is based on an auditory filter bank
that yields a high temporal resolution and thus enables a
more precise modeling of temporal effects such as pre- and
post-masking. These six perceptual models [3–8] combined
with some toolbox functions were integrated into the ITU
recommendation BS.1387 [9]. In this recommendation, the
method for objective measurement of perceived audio
quality (PEAQ) is used to predict the perceived quality for
wide-band audio signals with small impairment.

However, some limitations have been discovered in
PEAQ. Most notably PEAQ is shown to be unreliable for
signals with large impairment resulting from low bitrate
coding [10]. Furthermore, PEAQ is limited to a maximum of
two channels. Consequently, improvements in PEAQ have
been developed. Barbedo and Lopes. [11] proposed a new
cognitive model and new distortion parameters. The
limitation of PEAQ up to a maximum of two channels was
addressed by the development of an expert system to assist
with an optimization of multichannel audio system [12].
Creusere et al. [10,13] presented an energy equalization

quality metric (EEQM), which can be used in predicting the
audio quality for a wide range of impairments. Further-
more, a variable called the energy equalization threshold
(EET), used in EEQM, can also be appended in PEAQ as a
complementary model output variable (MOV) to give a
more accurate quality prediction [14].

1.2. Video quality assessment

A widely used objective video quality metric, peak
signal-to-noise ratio (PSNR), has been found to correlate
inaccurately with the perceived quality, since it does not
take the characteristics of the human visual system (HVS)
into account [15]. A number of objective methods for
measuring the perceived video quality have been proposed,
and many of them have been studied by the video quality
experts group (VQEG) [16]. Different validation phases
conducted by VQEG between 1997 and 2008 have helped
the ITU in producing two recommendations for objective
video quality assessment using full-reference models. ITU-T
J.144 [17] recommends models for digital television
pictures (i.e. coding impairments) and ITU-T J.247 [18] is
intended for multimedia-type video (QCIF, CIF and VGA)
transmitted over error-prone networks (i.e. coding
impairments and transmission errors). The conducted
validations are also reported in VQEG reports [19–21].

Objective video quality metrics are generally classified
into three categories based on the availability of reference
information: full-reference (FR), reduced-reference (RR),
and no-reference (NR) [22]. The FR metrics have access to
the reference signal. They have been studied widely and
usually have the best performance in predicting the
perceived quality, but the drawback is that they cannot
be used for all services, for example IPTV monitoring. The
following aspects are typically considered in a typical
HVS-based FR quality metric: color processing, multi-
channel decomposition, perceived contrast and adapta-
tion to a specific luminance or color, contrast sensitivity,
spatial and temporal masking, and error pooling over
various channels within the primary visual cortex [23].
The perceptual distortion metric (PDM) proposed by
Winkler [24] exploited main elements of an HVS-based
model and exhibited a promising performance in VQEG
FR-TV Phase I evaluation. RR metrics analyze a number of
quality features extracted from the reference and dis-
torted videos and integrate them into a single predictive
result. For example, Lee et al. [25] extracted a few edge
pixels in each frame, and used them to compute PSNR
around edge pixels. The task of NR metrics is very
complex as no information about the reference medium
is available. Therewith, an NR method is an absolute
measurement of features and properties in the distorted
video. Most NR metrics currently focused on certain
distortion features, such as blockiness [26], blurring [27],
and the analysis of coding parameter settings [28].

1.3. Audio–visual quality evaluation

Compared to the extensive studies on quality assess-
ment of individual modalities, relatively little work on
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joint audio–visual quality assessment has been per-
formed. Fundamental research on multi-modal perception
is required to study the mutual influence between
auditory and visual stimuli as well as other influence
factors in audio–visual quality assessment [29]. Some
experiments, reviewed below, have demonstrated that
there is a significant mutual influence between the
auditory and the visual domain in the perceived overall
audio–visual quality. To explain the relationship between
audio quality (AQ), video quality (VQ), and the overall
audio–visual quality (AVQ), five combinations of stimulus
types and assessment tasks, presented in Table 1, have
been suggested. In the Table, AQ_V denotes the audio
quality in the presence of a visual stimulus, and VQ_A
denotes the video quality in the presence of an auditory
stimulus. Earlier studies have shown that when a
combined auditory–visual stimulus was given, the
judgment of the quality in one modality was influenced
by the presence of the other modality [30,31]. Some other
experiments have been conducted to study how to derive
AVQ based on single AQ and VQ. In these experiments,
three subjective assessments corresponding to AQ, VQ,
and AVQ in Table 1 have been conducted. Most studies
have shown that VQ dominates AVQ in general [30,32,33],
while Hands [34] suggested that AQ is more important
than VQ in a teleconference setup, because the human
attention is mainly focused on the auditory stimulus.
Winkler’s experiments [35,36] have shown that more bits
should be allocated to audio to achieve a higher overall
quality in very low total bitrate budgets. Moreover, the
relationship between AQ, VQ, and AVQ is also influenced
by some other factors, such as attention of subjects, the
audio–visual content itself, usage context, and the
experiment environment [37,38]. It has been proposed
that the overall audio–visual quality can be derived by a
linear combination and a multiplication of AQ and VQ,
where the multiplication of AQ and VQ has very high
correlation with the overall quality [33].

When assessing the overall audio–visual quality,
synchronization between audio and video (e.g. lip sync)
may be an important issue. It is known that the
perception of asynchrony depends on the type of content
and on the task [39]. The overall quality is degraded when
audio and video do not form a single spatio-temporal
coherent stream. Dixon and Spitz [40] claimed that the
perceived quality degrades rapidly when asynchrony is
increased. Massaro et al. [41] also reported that intellig-
ibility is decreased when audio and video are not in sync.
When the audio is about 150 ms earlier than the video, it
was found that subjects might find the asynchrony

annoying [42,43]. When the video is earlier than the
audio, the same degradation is perceived for asynchronies
that are about twice when the audio is earlier than the
video. A large number of methods of audio and video
synchronization have been proposed [44,45]. In this
survey paper, we will introduce related issues in audio–
video synchronization briefly, while we will mainly focus
on objective quality metrics for spatiotemporally coherent
audio–visual systems.

Another issue for developing audio–visual quality
metrics, which cannot be neglected is the relationship
between the semantic importance of audio–visual con-
tents and the perceived quality. Only little work has been
done on this topic. As mentioned earlier, the mutual
influence of AQ and VQ is related to audio–visual
contents, for example, it can be assumed that AQ is more
important than VQ for typical teleconference sequences.
The visual content consists principally of head and
shoulders of speakers, while the audio content is
semantically more important as it may convey more
information. Moreover, there is a significant relation
between semantic audio–visual importance and the
perceived quality. For instance, when same quality
degradation occurs on two audio–visual segments with
different importance levels, subjects might give different
quality judgments for these two segments. Although most
existing quality metrics take into account the audio and
video contents latently, the relationship between seman-
tic audio–visual importance and the perceived quality has
not been studied adequately. There are two challenging
problems for integrating semantic importance into quality
assessment. Firstly, semantics is a very subjective con-
cept; so it is a challenging task to construct a generic
semantic importance model for audio–visual contents.
Existing semantic analysis methods are mainly focused on
certain types of multimedia contents, such as sports
video. They typically exploit audio–visual features, for
example, we have proposed a semantic analysis frame-
work for video contents based on visual perception [46].
Secondly, because semantics is a strong subjective con-
cept, it is difficult to define an order of semantic
importance among pieces of audio–visual contents. For
example, a sports sequence might be important for sports
fans, whereas a child may think a cartoon sequence is
more important. Thus, rather than comparing different
content items, the semantic importance of different
temporal segments in an audio–video sequence is usually
compared. Taking an example of a football sequence, goal
segments are usually important for most subjects. Conse-
quently, the quality scoring on the goal segments is
potentially different from other scenes in the same
sequence.

1.4. Goals and organization of the paper

As a basis of developing an audio–visual quality model,
we first study the popular objective quality metrics for
single auditory and visual modality, and analyze the
characteristics and performance of these metrics. Some
issues related to audio–visual quality assessment are then

Table 1
Quality assessment for five different presentations.

Stimuli Assessment Quality abbreviation

Audio only Audio quality AQ

Audio+Video Audio quality AQ_V

Video only Video quality VQ

Audio+Video Video quality VQ_A

Audio+Video Audio–visual quality AVQ
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studied, including audio–video synchronization, the inter-
active process of multi-modalities (i.e. audio and video in
this paper), semantic multimedia analysis and its relation
with quality assessment, temporal averaging methods for
long-term audio–visual sequences, etc. In addition, we
briefly review subjective quality assessment methodolo-
gies for audio–visual signals. To make this survey paper
more specific, we will focus on the general audio signals
and FR models.

The rest of this paper is organized as follows: we
introduce alignment methods for audio signals, video
signals, and audio–video synchronization in Section 2. The
audio quality metrics, especially PEAQ, are introduced in
Section 3. Section 4 introduces some well-known FR and
RR video quality metrics and presents the algorithm
analysis and experimental results. Subjective quality
assessment methodologies for audio–visual signals are
reviewed in Section 5. The mutual influence of audio ,
video and audio–visual qualities, as well as some relevant
issues and trends of audio–visual quality assessment, are
investigated in Section 6. Finally, some conclusions are
drawn in Section 7.

2. Alignment for audio–video signals

Alignment between distorted audio–visual signals and
original signals has a significant influence on quality
assessment. Slight misalignment may not affect the
subjective quality evaluation by human, while it will
greatly reduce the accuracy of an objective quality metric.
In addition, the audio–video synchronization is another
important issue for audio–visual quality assessment. This
section will investigate briefly the related issues in the
alignment of audio–video signals, and approaches for
audio–video alignment used in our experiments will be
introduced.

2.1. Audio alignment

Alignment between distorted and original audio
signals is an important issue for audio quality evaluation.
The misalignment is mostly perceptually irrelevant, but
can affect an objective quality measure considerably. Both
coding and transmission errors cause a time delay
between the distorted and original audio signals. For
example, in advanced audio coding (AAC), the time delay
is one frame because the psychoacoustic model needs to
estimate what block/window switch will be performed.
For parametric stereo (PS) and spectral band replication
(SBR) in the high-efficiency AAC (HE-AAC), a filter delay is
required for quadrature mirror filter (QMF) and hybrid
analysis [47]. So, once the mode of PS is determined, the
time delay will be constant and hence it only needs to be
estimated once. However, transmission errors may cause
different delays for different packets, and a finer time
alignment block by block is required in this case. In
addition, level alignment can be done by scaling a test
signal with a constant factor that is chosen to result in
equal overall rms values. This way of level alignment will
work if the overall gain of the system has no long-term

drifts. Although time alignment is not an integral part of
PEAQ, it can be achieved in other ways.

A commonly used approach is to compute the cross-
correlation function of the temporal envelopes between
the distorted and original signals. The delay of one signal
relative to the other is given by the position of the
maximum of the correlation function. Alternatively, audio
signals can be aligned visually using specialized software.
In our experiments, we used the cross-correlation func-
tion to estimate a coarse delay. Subsequently, a software
named Sonic Visualiser with MATCH Vamp plugin based
on an efficient dynamic time warping algorithm [48] was
employed for validating the coarse delay estimation, and
for performing a more accurate visual alignment.

2.2. Video alignment

Analog to digital video conversion, video coding, and
transmission errors may introduce spatial, temporal,
and gain/level shift misalignment between the distorted
and original videos. Video alignment has to be considered
in FR and RR objective video quality assessment, because
the quality is based on a comparison between the
distorted and original videos. Normally, misalignments
are assumed to be constant for short video sequences and
hence need to be calculated once [49], if no temporal
impairment is taken into account. However, if transmis-
sion error and therefore temporal impairment are intro-
duced, the situation becomes complicated, as the
misalignment will vary temporally. Any metrics should
include a video alignment step, which can be performed
either independently of the quality estimation algorithm
or using some of the extracted features in the metrics.
ITU-T J.247 [18] also includes corresponding alignment
methods for different objective quality metrics. For
example, the NTT model moves a video frame of the
distorted video to find the pixel and frame shifts that give
the minimum difference in terms of luminance between
the distorted and reference videos. The Yonsei model in
J.247 uses extracted edge pixels in aligning the distorted
and reference videos by minimizing MSE over all edge
pixels in a sliding window. Generally, most alignment
methods try to search for suitable spatial, temporal and
gain/level shifts to maximize the correlation between the
distorted and the aligned reference videos [50,51].

2.3. Audio–video synchronization

In systems reproducing audio–visual content, play back
of synchronized auditory and visual stimuli is considered
mandatory. Interestingly, the detection thresholds for un-
synchrony are not temporally symmetric. Hollier and Rimell.
[29,52] have performed a number of experiments focusing
on audio–visual communications systems to examine this
temporal asymmetry with different types of stimuli. They
compared a talking head audio–visual scene with a
bouncing pen scene and an audio–visual stimulus in which
an ax hits an object a single time. They concluded that the
general trend in error detection asymmetry is apparent for
all stimulus types. Furthermore, the distinctness of the ax
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stimulus results in a greater probability of detection than for
the pen stimulus. For the talking head stimulus, the error
detection rate is consistent with the other stimuli when the
audio lags behind the video, but greater than either the ax or
the pen stimuli when the audio leads the video. Apparently,
test subjects compared the artificial stimuli presented in the
lab with real life experiences. In real life, due to the physical
nature of different traveling speeds of sound and light, audio
can never lead the visual percept.

These findings on synchronization error detection
asymmetry are also reflected in the recommended
synchronization thresholds given in ITU-T J.100 [53],
which are 20 ms for audio lead and 40 ms for audio lag.
The recommendation suggests these fixed values for all
types of television content and is intended to ensure that
synchronization errors remain imperceptible for all
possible varieties of content. This relatively small thresh-
old means that the human perceptual system is generally
quite sensitive to errors in synchrony.

In the field of perceptual psychology, interaction
between the aural and visual modalities is well docu-
mented. A rather large number of singular effects have
been scientifically researched. Because in these experi-
ments often extremely simple auditory and visual stimuli
are used, it is often hard to extrapolate the results for
more complex media applications. Therefore, it is inter-
esting to look at the field of film music investigations. A
number of models for film music perception have been
proposed. Lipscomb e.g. [54] suggested that there are at
least two implicit judgments made during the perceptual
processing of the movie experience: an association
judgment and a mapping of accent structures. According
to their model, the mapping of accent structure is
determined by the consistency with which important
events in the musical score coincide with important
events in the visual scene – the synchrony between the
two modalities. When test subjects were presented with
extremely simple auditory and visual stimuli, accent
alignment played an important role in the determination
of ratings of effectiveness. As the stimuli became more
complex, the importance of accent structure alignment
appeared to diminish and the association judgment
assumed a dominant role. This means that apparently
synchronization loses its importance with growing com-
plexity of the audio–visual stimuli.

3. Perceptual evaluation of audio quality

Objective audio quality models that incorporate prop-
erties of the human auditory system have existed since
the 1970s and were mainly applied to speech codecs. As
mentioned earlier, a number of psychoacoustic models
have been proposed to measure the perceived audio
quality, and six of them [3–8] were extracted and
integrated by the ITU into the standard method, PEAQ [9].
Although there are many other metrics that have good
performance, we concentrate on PEAQ and the improved
methods. The first reason is that we mainly focus on the
wide-band audio rather than the narrow-band speech; so
we do not consider the numerous speech quality metrics

even though they correlate well with the subjective
speech quality assessment. Second, it is proven that PEAQ
is good enough for evaluating the performance of audio
codecs and transmission networks, and the ITU has no
plans for a replacement to this model at the present time.
In this section, we will introduce the main principle of
PEAQ and the experimental results on a conformance test
and two sample rates: 48 and 44.1 kHz. In addition, the
experimental results of improved PEAQ and some other
audio quality metrics, with respect to the results of a
subjective quality evaluation conducted by MP3-tech [55],
will also be presented.

3.1. PEAQ and experimental results

PEAQ was standardized by ITU-R BS.1387 during
1998–2001 [9], which specified a method for objective
assessment of the perceived audio quality of a device
under test, e.g. a high bitrate codec. PEAQ consists of two
versions: one is called the basic version, which is intended
for applications that require high processing speed. The
other is the advanced version, which is intended for
applications requiring the highest achievable accuracy
[56]. The basic version uses only an FFT-based ear model,
and employs both the concept of comparing internal
representations and a masked threshold. The masked
threshold is a threshold above which human can perceive
the difference between the distorted and reference audio
signals. The advanced version of PEAQ makes use of the
FFT-based ear model as well as a filter bank-based ear
model. The masked threshold concept is applied using the
FFT-based ear model, whereas the concept of comparing
internal representations is applied using the filter bank-
based ear model. The basic version uses eleven model
output variables (MOV), which are derived from the ear
model to measure loudness of distortions, amount of
linear distortions, changes in the temporal envelope, a
noise-to-mask ratio, noise detection probability, and
harmonic structure in the error signal. In the advanced
version, five MOVs derived from the filter bank measure
the loudness of non-linear distortions, the amount of
linear distortions, and disruptions of the temporal
envelope. Furthermore, the MOVs based on the FFT
include a noise-to-mask ratio and a cepstrum-like
measure of harmonic structure in the error signal. During
the computation of MOVs, spectral averaging over
frequency bands and temporal averaging over temporal
frames are applied. Frame selection strategy is also
performed on the signals and the MOVs. These MOVs
extracted either from the basic or the advanced versions
are mapped to a single quality index objective difference
grade (ODG) by a multi-layer neural network with either
3 (basic version) or 5 (advanced version) units in a single
hidden layer. The neural network is trained based on all
available data, such as MPEG90, ITU93, etc. [9].

ITU provided 16 testing items including the original
audio signals and their distortions for conformance test.
These items were sampled at 48 kHz with 16-bit PCM. We
implemented the basic versions of PEAQ in MATLAB
according to the instruction of ITU BS.1387 and an
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examination written by Kabal [57]. Subsequently, a
conformance test on the standard audio signals using
our implementation and two other public software
implementations of the PEAQ basic version (implementa-
tion in MATLAB by McGill University and EAQUAL soft-
ware in C language), was performed. Mean absolute
difference (MAD) and root mean squared error (RMSE)
are calculated between the metric results and the
standard ODG values provided by ITU. Table 2 presents
the experimental results. ITU suggested that an acceptable
tolerance interval is 70.02 of the ODG for all test items.
According to the experimental results, although our
implementation of the basic version cannot produce
results within this tolerance exactly for all items, it is
comparable to the results of the public software
implementations. So, we think that our implementation
of the basic version is valid and can be used in evaluating
the perceptual audio quality.

The standard PEAQ only supports audio signals at
48 kHz sample rate. However, most popular audio signals
are sampled at other rates, such as 44.1 and 24 kHz. A
subjective audio quality test conducted by MP3-tech used
audio signals at 44.1 kHz sample rate [55]. Therefore, we
tried to find the best way to use PEAQ with audio signals
sampled at 44.1 kHz. We still used the standard audio
signals in the experiment based on the following
assumption: the down-sampling and up-sampling will
not influence audio quality. Although this assumption is
not very convincing, it can compare two approaches for
using PEAQ on 44.1 kHz samples. The experiment is
designed as follows: first, the standard 48 kHz signals
are down-sampled to 44.1 kHz, and a modified PEAQ,
where two parameters related to sample rate in grouping
into critical bands and excitation patterns are changed
accordingly, is performed on these down-sampled signals.
Second, these 44.1 kHz signals are up-sampled to 48 kHz
again, and the standard PEAQ implementation is then
performed. So, we can compute two groups of quality

results, and they are listed in the right columns in Table 2.
The MAD and RMSE are still used for comparison.
According to the results, the performance of the second
approach is better than the first. So, we believe that up-
sampling should be performed first and then the standard
PEAQ algorithm is used when evaluating the quality of the
audio signals at 44.1 kHz sample rate.

3.2. Audio quality metrics for parametric coding scheme

Although PEAQ has a credible performance for asses-
sing the perceived audio quality, it is important to note
that PEAQ is designed to evaluate reconstructed audio
signals that have relatively high quality. This is made clear
that ODG is designed to approximate subjective difference
grade (SDG), which is determined using the testing
framework described in ITU Recommendation ITU-R
BS.1116 for small impairments [58]. With the wide
application of parametric audio codecs, such as high-
efficiency advanced audio coding (HE-AAC) versions1 and
2, developing a metric that can predict audio quality with
large impairment is becoming an urgent issue.

HE-AAC is a lossy data compression for digital audio. It
is an extension of low complexity AAC (AAC LC) optimized
for low-bitrate applications such as streaming audio.
HE-AAC v1 used spectral bank replication (SBR) to
enhance the compression efficiency in the frequency
domain. HE-AAC v2 couples SBR with parametric stereo
(PR) to enhance the compression efficiency of stereo
signals. To the best of our knowledge, there is no audio
quality metric designed to handle HE-AAC v1 or v2. In this
paper, we concentrate on the energy equalization
approach (EEA) proposed by Creusere et al. [10,13,
14,59], PEMO-Q proposed by Huber and Kollmeier. [60],
as well as two other simple metrics: measuring normal-
izing block (MNB) [61] and mean structural similarity

Table 2
Experimental results of PEAQ (basic version).

Test items Basic version Sample rates

ITU ODG Authors McGill EAQUAL 44.1 kHz 48 kHz

acodsna.wav �0.676 �0.675 �0.679 �0.69 �0.531 �0.649

bcodtri.wav �0.304 �0.291 �0.292 �0.27 �0.388 �0.487

ccodsax.wav �1.829 �1.793 �1.797 �1.81 �1.323 �1.742

ecodsmg.wav �0.412 �0.369 �0.368 �0.37 �0.280 �0.407

fcodsb1.wav �1.195 �1.181 �1.168 �1.13 �0.886 �1.120

fcodtr1.wav �0.598 �0.552 �0.561 �0.55 �0.540 �0.751

fcodtr2.wav �1.927 �1.790 �1.788 �1.77 �1.599 �1.871

fcodtr3.wav �2.601 �2.317 �2.457 �2.43 �2.137 �2.370

gcodcla.wav �0.386 �0.380 �0.374 �0.38 �0.259 �0.387

icodsna.wav �3.786 �3.786 �3.772 �3.77 �3.706 �3.789

kcodsme.wav 0.038 0.043 0.045 0.06 0.115 0.002

lcodhrp.wav �0.876 �0.844 �0.834 �0.83 �0.616 �0.834

lcodpip.wav �0.293 �0.064 �0.035 �0.28 �0.035 �0.111

mcodcla.wav �2.331 �2.290 �2.267 �2.18 �1.633 �2.023

ncodsfe.wav 0.045 0.048 0.048 0.05 0.043 0.034

scodclv.wav �0.435 �0.385 �0.413 �0.34 �0.369 �0.413

MAD – 0.058 0.054 0.057 0.225 0.089
RMSE – 0.100 0.086 0.079 0.293 0.127
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(MSSIM) [62], and test their performance on audio quality
assessment for the parametric coding scheme.

In EEA, a truncation threshold T is set on the spectro-
gram of an original audio signal and it is varied until the
truncated spectrogram has the same energy as the spectro-
gram of the distorted signal. Ultimately, T is adjusted until
the truncated version of the original spectrum has the same
island-like character as the distorted signal, and thus T

serves as a measure of how island-like the spectrum of the
distorted signal is. T can be used as an independent
measure of perceived audio quality, and it can also be
integrated into PEAQ as an additional MOV. The authors of
EEA believe that EEA is an effective measure of the quality
in highly impaired audio [14]. Another advantage is that the
time alignment is not required in EEA because misalign-
ment between the original and distorted signals has no
influence on finding the threshold T. However, EEA is
designed and tested using music signals, and the applic-
ability to speech and other general acoustic signals is
unknown. In addition, when adding this threshold T as an
additional MOV in PEAQ, the authors concluded that the
three-layer neural network in PEAQ is unnecessary. There-
fore, a least-square procedure was used in finding an
optimal linear weighting for each MOV to get a scalar value
estimate of audio quality, and such simple linear weighting
is less susceptible to over-training and thus likely to
provide a more robust quality metric [10]. Furthermore, a
minimax optimal MOV selection was proposed for finding
the most suitable subsets within all the MOVs (11/5 original
MOVs in PEAQ basic/advanced version+threshold T) to
minimize a cost function: the maximum absolute error
between the objective metric output and the subjective
quality measurement. Because the metric was proposed for
a wide range of audio distortions, the subjective experi-
ments for intermediate and large impairments measured by
ITU BS.1534 (MUSHRA) [63] were also included in the
optimization procedure.

Based on a psychoacoustically validated, quantitative
model of the effective peripheral auditory processing,
Huber and Kollmeier [60] proposed an objective assess-
ment of the perceived audio quality by expanding a
speech quality measure in [64]. To evaluate the quality of
a given distorted audio signal relative to a corresponding
high quality reference signal, an auditory model was
employed to compute the internal representations of the
signals, which were partly assimilated in order to account
for assumed cognitive aspects. The linear cross-correla-
tion coefficient of the assimilated internal representations
represents a perceptual similarity measure (PSM). PSM
shows a good correlation with subjective quality assess-
ments if different types of audio signals are considered
separately. A second quality measure PSMt is represented
by the fifth percentile of the sequence of instantaneous
PSM, which has better accuracy of signal independent
quality prediction than the original PSM. Finally, PSMt can
be mapped to an ODG scale by a regression function
composed of a hyperbola and a linear function derived
from a numerical fitting procedure.

In addition, we also tested some other simpler metrics
for audio quality assessment in the parametric coding
scheme, and MNB and MSSIM methods were chosen

because of their simple computation. MNB [61] uses a
simple but effective perceptual transformation obtained
using a Bark frequency scale, and a distance measure,
which consists of a hierarchy of measuring normalizing
blocks. Each measuring normalizing block integrates two
perceptually transformed signals over a time or frequency
interval to determine the average difference across that
interval. This difference is then normalized out of one
signal, and is further processed to generate one or more
measurements. The linear combination of these measure-
ments gives an auditory distance. SSIM was initially
proposed by Wang et al. [65] for image quality assess-
ment, and Kandadai et al. [62] extended this idea to audio
structure similarity in two ways. First, it is assumed that
the structure depends on each time sample and its
position with respect to a small temporal neighborhood
of samples around it. Then the audio sequence can be split
into temporal frames with 50% overlap. The SSIM on each
frame is applied separately, and the mean SSIM over all
frames is calculated as the audio quality. Second, a time–
frequency transform, such as a 256-point MDCT with a
50% overlapping window, is applied to the audio
sequences. The structural similarity in both the temporal
and frequency domains can be evaluated by applying
SSIM to the 2-dimensional blocks of the time–frequency
representation.

In our experiment, the subjective results from a public
audio test conducted by MP3-tech were employed [55].
Although the purpose of this test is to evaluate the quality
provided by state-of-the-art MPEG audio encoders, we
believe that it can also be used in evaluating the performance
of audio quality metrics on the parametric coding schemes.
Seven encoders in total using 18 audio signals at 44.1 kHz
sample rate were tested, including: 3GPP reference encoder
HE-ACC v1, Coding Technologies HE-AAC v1 and v2, Nero
Digital HE-AAC v1 and v2, L.A.M.E. MP3 as a high anchor, and
Apple Quick Time/iTunes LC-AAC as a low anchor. Six
metrics were evaluated in our experiment, including PEAQ
basic version, EEA, and the metric combining the threshold T

in EEA as an additional MOV in PEAQ (EET_PEAQ), PEMO-Q,
MNB, and the first approach of MSSIM. Two methods of
EET_PEAQ were included: one used the minimax-optimal
MOV selection, while the other did not. All the metrics were
implemented in MATLAB. PEMO-Q [66] is a demo version in
MATLAB, which only supports signals that are no longer than
4 sec; so an audio sequence is first divided into 4s segments
and the overall quality is an average of model results over all
segments. In addition, EEA only supports single channel
signals, so the quality of stereo signals was taken as the
average of model results over the two channels. The audio
signals were aligned in advance using the method described
in Section 2 A, and re-sampling may be required for suiting
to the demand of these metrics. The subjective measure used
a 5-point impairment scale (1 – very annoying, 2 – annoying,
3 – slightly annoying, 4 – perceptible but not annoying, and
5 – imperceptible). The evaluation criteria of the metrics
were chosen to relate to the prediction accuracy, mono-
tonicity, and consistency. Therefore, RMSE, the Pearson linear
correlation coefficient, and the Spearman rank order correla-
tion coefficient between the subjective results and ODG
computed by the metrics were used. Averaged computation
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time for one sequence was taken as the criterion of metric
complexity. Table 3 presents the experimental results.
According to the evaluation results, EET_PEAQ achieves the
best performance, while other methods are not promising for
parametric coding schemes. Thus, although these metrics
have been proved to be good for measuring the audio quality
with small impairments. We are still a long way from
developing more robust methods for a wide range of audio
distortions. In addition, re-sampling may also influence the
performance of these metrics, so developing robust metrics
to different sample rates is still an open issue.

4. Objective video quality metrics

The goal of objective video quality metrics is to give
quality predictions, which are in accordance with sub-
jective assessment results. Thus, a good objective metric
should take the psychophysical process of the human
vision and perception system into account. Main char-
acteristics of the HVS include modeling of contrast and
orientation sensitivity, frequency selection, spatial and
temporal pattern masking and color perception [24]. Due
to their generality, HVS-based metrics can in principle be
used for a wide variety of video degradations. These
metrics retrospect to the 1970s and 1980s, when Mannos
and Sakrison [67] and Lukas and Budrikis. [68] developed
the first image and video quality metrics based on the
visual model. Later, well-known HVS-based metrics
include a visual difference predictor (VDP) proposed by
Daly [69], Sarnoff just noticeable differences (JND)
method by Lubin and Fibush. [70], PDM [24], etc.
Psychophysically driven metrics usually have good per-
formance because they mimic the formation process of
the human vision and perception. However, the computa-
tion is accordingly complex due to the complexity of such
a process. In addition, although the human perception for
video quality is formed according to the perceptual
process above, the subjective assessment may be deter-
mined by certain important aspects of the HVS. Thus,
simplified metrics based on the extraction and analysis of
certain features or artifacts in video have been proposed.
These metrics, categorized as the engineering approach,
assess how pronounced the detected artifacts are in order
to estimate the overall quality. Metrics following the
engineering approach do not necessarily disregard the
attributes of the HVS, as they often consider psychophy-
sical effects as well, but image content and distortion
analysis rather than fundamental vision modeling is the

conceptual basis for their design. In this section, we
introduce main existing FR and RR metrics and present a
comprehensive analysis of their computational principles,
results, and complexity. Table 4 presents an overview of
the introduced video quality metrics in this paper,
including brief explanations, approach categories,
processing units or domains, and reference numbers.

Metrics derived from the psychophysical approach
usually follow the psychophysical process of the human
vision and perception, where some of them consider most
characteristics of this process while others just take a
certain characteristic of the HVS. PDM proposed by
Winkler is a representative method of the former, and it
contains four steps performed on both the reference and
distorted videos synchronously: color space conversion,
perceptual decomposition, contrast and gain control, and
error detection and pooling.

Psychophysical metrics may be simplified in two ways.
First, all processes of the HVS do not need to be
considered in quality computation, as in [73] and [80].
Second, only selected regions of the images may be
enough to calculate the quality, because the HVS is more
sensitive to severer distortions or larger degraded regions
[81]. The distortions occurring in certain regions are
invisible because of the masking effect. Thus, a reduction
in computing cycles can be achieved based on an the
analysis of image contents. Lee and Kwon [80] proposed
to use a spatiotemporal wavelet transform to decompose
the input video into different frequencies, and then a
quality index is based on pooling the difference in the
decomposed results between the reference and distorted
videos. Similarly, Guo et al. [73] used a Gabor filter bank
to perform the decomposition into different frequencies
and orientations. As the discrete cosine transform (DCT) is
widely used in video coding, a digital video quality (DVQ)
metric has been proposed by Watson et al. [74] based on
the human vision. MSU method [75] used DCT as the
channel decomposition tool, whilst other perceptual
processes, such as color transform, contrast filtering, were
also integrated.

As psychophysical metrics are usually computationally
complex, a number of metrics in the engineering approach
category have been proposed. These kinds of metrics
compare the quality features extracted from the reference
and distorted videos, in which certain characteristics of
the HVS are taken into account. Coding of digital video
causes certain types of visual artifacts and distortions,
such as blockiness, blurring, color bleeding, and ringing,
and these types of distortions can be classified into the

Table 3
Evaluation results of objective audio quality metrics for parametric audio coding.

Criteria PEAQ EEA EET_PEAQ (with

optimization)

EET_PEAQ

(without

optimization)

PEMO-Q MNB MSSIM

RMSE 1.76 1.46 1.07 0.96 1.54 2.02 2.35

Pearson 0.478 0.577 0.659 0.683 0.614 0.439 0.401

Spearman 0.582 0.603 0.712 0.707 0.663 0.536 0.552

Time (s) 248.7 196.3 262.2 398.5 223.5 199.2 162.0
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category of spatial distortion. In addition, packet loss
and other transmission errors cause temporal distortion
in the form of freezing of the latest correct frame or
temporal propagation of the distortion caused by error
concealment of image slices is affected by the transmis-
sion errors. Most engineering metrics are designed to
detect artifacts and distortions caused by coding and
transmission errors.

The NTIA model proposed by Pinson and Wolf [81]
divides video sequences into spatiotemporal (S-T) blocks,
and a number of features measuring the spatial gradient
activity, chrominance information, contrast information
and absolute temporal information in each of these blocks
are computed. The features extracted from the reference
and distorted videos are then compared using functions
that model visual masking of the spatial and temporal
impairments. Several spatial, temporal collapsing and
clipping functions are applied in the masked results
because the HVS is usually more sensitive to the worst
distortions. We presented a simplified NTIA model, which
was based on quality features extracted from spatial
gradients [82]. These features can express the coding
artifacts of blockiness, blurring and added noise, whilst
the influence caused by frame freezing is also taken into
account. Furthermore, the computation speed can be
increased evidently by adaptively adjusting the sizes of
the S-T blocks according to spatial and temporal percep-
tual information.

There are some other similar metrics to extract the
distortion features from the reference and distorted
videos. Perceptual evaluation of video quality (PEVQ),
standardized in ITU-T J.247 [18], computes four indicators
for spatial distortion analysis: luminance indicator based
on luminance difference of edge images between the
reference and distorted videos, chrominance indicator by
a similar approach as for the luminance, and two temporal
variability indicators for omitted and introduced compo-
nents. The temporal distortion is measured by a frame
repeat indicator. Finally, the perceived video quality is
estimated by mapping all indicators to a single number
using a sigmoid approach. Also standardized in ITU-T

J.247, the psytechnics model analyzes spatial frequency,
edge distortion, blurring, and blockiness on resized input
videos, and the overall quality prediction is a linear
combination of the above analysis results, temporal
distortion caused by dropped/frozen frames, and a spatial
complexity analysis on the distorted video.

The human visual system cannot perceive any changes
between adjacent pixels below a just noticeable distortion
(JND) threshold due to underlying spatial/temporal
sensitivity and masking properties. This characteristic
can be widely used in video coding and quality assess-
ment. Obviously, any unnoticeable signal difference does
not need be coded and reflected in a distortion measure.
Several methods for finding JND thresholds have been
proposed operating in a sub-band (DCT or wavelet)
domain or a pixel domain [71].

Several metrics either using PSNR as a component in
their computation or integrating PSNR into HVS have been
proposed, because of the simple computation and clear
physical meanings of PSNR. In the method proposed by
Yang et al. [72], a JND threshold is estimated, and a
modified PSNR is computed by subtracting the JND
threshold from the difference between the reference and
distorted videos. NTT’s FR model uses PSNR as one of the
five features to compute an objective quality [18]. Lee
et al. [76] proposed to use an optimization procedure to
compute the weighted PSNR for three color components,
and the experimental results showed that this method
provides improved performance over the conventional
PSNR. In addition, NTIA scales PNSR as presented in
Eq. (1), results into a measure, which perform better than
the original PSNR [49].

PSNR_M¼
1

1þe0:1701ðPSNR�25:6675Þ
, 10rPSNRr55 ð1Þ

Moreover, there are some metrics that take into
account the image characteristics and combine them with
HVS. Under an assumption that the HVS is highly adapted
to extract structural information from field of vision,
Wang et al. [65] proposed that a measure of structural
information change can provide a good approximation to

Table 4
Overview of perceptual-based video quality metrics.

Availability of

reference

Brief explanation of metrics

(quality features in NR metrics)

Approaches (psychophysical/

Engineering)

Processing unit/domain Reference

Full reference PDM Psychophysical Whole image [24]

JND methods [70–72]

PEVQ Engineering Image blocks [18]

NTT model

Gabor difference based Whole image [73]

Psytechnics model Resized to QCIF [18]

DVQ Psychophysical DCT domain [74]

MSU model Engineering [75]

Reduced reference PSNR based Engineering Whole image [76]

Attention based Visual attention regions [77–79]

PSNR around edge areas Whole image [18,25]

Wavelet transform based [80]

NTIA model and its simplification Image blocks [49,81,82]

SSIM Whole image/blocks [65,83]
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perceive image distortion. The structural similarity (SSIM)
index is used in measuring the image distortion based on
a comparison of luminance, contrast and structure
between the original and distorted images. This SSIM
metric was then extended to measure the video distortion
by integrating chrominance and motion information [83].
Lee et al. [25] found that subjects tend to give low quality
scores to a video sequence whose edges are noticeably
degraded, even though the overall MSE is not large. So,
they proposed to use PSNR in the edge areas instead of the
whole images, which was proven to be more correlative
with subjective evaluation. This method, combined with
two other features, which reflect the blockiness and
blurriness degradation, was then standardized in ITU-T
J.247. Although these kinds of metrics do not take into
account the characteristics of the HVS in detail, it is
relatively simple to compute and shows an acceptable
performance because image characteristic is modeled in a
perceptual manner.

In addition, visual attention is another important
attribute of the human visual and perceptual system,
while it is ignored in most existing quality metrics. Most
of the current metrics consider the distortion on all sub-
regions or pixels equally. Actually, many physiological
and psychological experiments have demonstrated that
human attention is not allocated equally to all regions in
field of vision, but focused on certain regions known as
salient regions [84]. Some tentative works have been done
on integrating the human attention analysis into quality
assessment. Lu et al. [77] proposed significance map
estimation for visual quality assessment, and evaluated its
application in a JND model. Based on the saliency
attention model in [84], Feng et al. [78] investigated
some different weighting methods at the pixels in salient
regions for MSE, MAD, and SSIM metrics. However, no
appropriate metrics have been proposed, which can
exploit the characteristics of the human attention ade-
quately. In [79], we analyzed the capability of visual
attention in visual quality assessment, and proposed an
effective video quality metric by taking into consideration
the human attention analysis.

We surveyed main approaches of objective video
quality above, including the psychophysical and engineer-
ing methods. These methods cover a wide range of
existing metrics, and some of them have been standar-
dized by ITU. To evaluate their performance and complex-
ity further, we implemented some of them: PDM [24], a
method using wavelet transform [80], Gabor difference
metric [73], Yonsei method [25], JND metric [72], SSIM
model [83], a simplified NTIA model [82], and a visual
attention based metric [79] proposed by the authors. The
public NTIA general model [85] and the MSU software
[86] were also tested. The conventional PSNR was taken as
the benchmark.

In our experiments, a total of 392 video clips and the
corresponding subjective quality results were employed,
which included 320 VQEG FR-TV Phase I test clips, 60
temporal scalability test clips, and 12 mobile test clips.
The temporal scalability test was a single stimulus
assessment to compare the performance of different
temporal scalability parameters in an H.264/AVC codec.

Four different video contents were employed with two
resolutions: VGA and QVGA. The mobile test was a double
stimulus continuous quality scale assessment, which
employed three different content types with QCIF resolu-
tion to test the performance of H.264/AVC codec at four
bit rates: 24, 32, 40, and 48 kbps. Because different
subjective experiments usually have different rating
scales, different test conditions, and many other test
variables that change from one laboratory to another, it is
difficult to compare or combine the results of two or more
subjective experiments directly. Pinson and Wolf, [87]
proposed an objective method for combining multiple
subjective data sets, which can map the multiple
subjective data sets onto a single common scale using
an iterated nested least squares algorithm (INLSA). In our
experiments, we used INLSA to map all subjective results
into the range [0,1]. Then, a non-linear regression
suggested in [20] was fitted to the data set of the metric
results VQ and the mapped MOS values, and restricted to
be monotonic over the range of the MOS values. The
following function fitted to the data [MOSP, MOS] was
used in the regression

MOSP ¼
b1

1þe�b2�ðVQ�b3Þ
ð2Þ

where b1, b2, and b3 denote the regression parameters.
The non-linear regression was used to transform the set of
metrics results VQ to a set of predicted MOS values, MOSP,
which were then compared with the mapped MOS values.

Four evaluation criteria were chosen to assess the
prediction accuracy, monotonicity, and consistency of the
metrics; hence RMSE, the Pearson linear correlation
coefficient, the Spearman rank order correlation coefficient
between MOSP and MOS, and outlier ratio were used.

Table 5 gives the evaluation results of the tested metrics.
According to the evaluation, the NTIA model and the visual
attention based metric, as well as PDM, achieve the best
performance, while PSNR is the worst. For the simplified
NTIA model and the visual attention based metric proposed
by the authors, we used half of the original undistorted video
scenarios and their corresponding distorted clips in the
training of the coefficients and thresholds. Then, the metrics’
performance was evaluated with respect to the remaining
sequences. Although the training clips were different from
the test clips, the performance comparison between
these two models and other metrics might be unfair,
because we used data coming from the same set to train
our models. Further analysis of the proposed models will
be performed using other video data sets in our future
work.

Statistically speaking, there are currently no objective
metrics available that can replace subjective quality
assessments. We suspect that a more accurate metric
must take into account not only the internal character-
istics of video clips and the HVS, but also external factors
such as testing environment and a priori knowledge of
subjects. In some special applications, e.g. when a coarse
video quality estimation rather than an exact prediction
is required, we believe that a simpler metric, e.g. based
on PSNR combined with semantic video analysis, can
be used.
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5. Subjective methodology for audio–visual quality
assessment

As introduced in the preceding sections, ITU has come
up with a number of normative recommendations of how
to perform subjective assessments of perceived quality in
general. These suggestions are internationally recognized
and allow a comparison of results of assessments carried
out in different laboratories. They define the test condi-
tions as well as the form of presentation. Suggestions on
rating scales to be used as well as on the classification of
the test material are given. Several important recommen-
dations will be discussed in the sequel.

Unfortunately, all these recommendations are mostly
related to assessments in one single modality. Most
recommendations either focus on audio or video quality
alone, without taking into account the possible cross-
modal effects. There are only very few recommendations
that relate directly to quality assessments of audio–visual
program material.

ITU-R BT.500-11 [88] provides details on methodologies
for the evaluation of television picture quality. Most
important in the audiovisual context, ITU-R BT.500-11
contains recommendations for viewing distances, illumina-
tion levels, screen sizes for different resolution and aspect
ratio displays, etc. ITU-R BS.775-1 [89] makes suggestions
on the reproduction setup for multichannel audio with
accompanying picture. The relation between screen size,
aspect ratio and loudspeaker positions is discussed. ITU-R
BS.1286 [90] guides the testing of audio systems in the
presence of an accompanying image. It should be applied in
conjunction with recommendations ITU-R BS.1116-1,
BS.1284, or BS.1285. Appendix 1 of ITU-R BS.1286 contains
a list of viewing distances and conditions for different
image sizes, aspect ratios, and image definitions.

ITU-R BT.1359 [91] provides recommendations for the
relative timing of television sound and vision. These
recommendations are related to inter-modal synchrony
issues discussed in Section 2.C. Finally, Question ITU-R 102/6
[92] requests suggestions for further standardizing the
methodologies used for the subjective assessment of audio
and video quality, based on the fact that existing standards
do not cover all aspects of audiovisual perception.

The telecommunication standardization sector of ITU
has also come up with a number of recommendations
related to audio–visual quality assessments. ITU-R P.910
[93] describes non-interactive subjective assessment
methods that can be used to evaluate one-way overall
video quality for multimedia applications such as video-
conferencing. It also suggests characteristics of source

sequences to be used, such as duration, content, number
of sequences etc., ITU-R P.911 [1] is similar to P.910, but
applies to audio–visual (instead of visual only) subjective
assessment. Both are valid for non-interactive audio–
visual program material. Aspects of interactive applica-
tions are not considered here.

Today’s assessments rely on a combination of sub-
jective and introspective methods, e.g. with question-
naires and rating scales. These methods imply that the
test subject needs to be questioned during or immediately
after the presentation of an item. Because it is necessary
for the test subject to reflect upon the perceived
impressions before rating an experience, he/she is
induced to consume the content in a much more
conscious way, and the effects to be assessed might not
occur any longer. New approaches try to assess the degree
of agreement of test subjects as a measure of perceived
quality by using physical, physiological or behavioral
investigations, but these are only starting to give relevant
data [94]. It is therefore still necessary to ask the test
subjects directly.

The most common test methods of subjective assess-
ments can be categorized into single stimulus (also called
absolute category rating, ACR) methods, pair comparison
methods, and multi-stimulus methods. Alternatively,
degradation category rating (DCR) is widely used. Sub-
jective testing always requires the choice of a methodol-
ogy and a rating scale amongst many possibilities, an
issue that cannot be discussed in more detail here.

Audio–visual quality assessment can either give quan-
titative or qualitative data. Coolican [95] gives a definition
of the terms quantitative data and qualitative data.
Qualitative data are data ‘‘left in its original form of
meaning (e.g. speech, text) and not quantified’’, whereas
quantitative data are data ‘‘in numerical form, the results
of measurement’’. Hence, qualitative assessments are
assessments that allow test subjects to use their own
words for describing the percepts, whereas quantitative
assessments work with predetermined attributes that are
quantified by subjects using a given rating scale.

Usually, quantitative assessment methods are preferred,
because the resulting data are easier to analyze. Unfortu-
nately, these methods often require an increased degree of
preparation of the test subjects. This can either consist of a
lengthy and repeated vocabulary development for all kinds
of descriptive analysis processes (see e.g. [96]), or in a
training that familiarizes test subjects with the semantic
identifiers of the attributes to be rated. Still, quantitative
methods are far more often used in assessments of audio
and visual quality than qualitative methods. A successful

Table 5
Evaluation results of objective video quality metrics.

Criteria PDM Wavelet Gabor Yonsei JND SSIM MSU NTIA Simplified

NTIA

Attention

based metric

PSNR

RMSE 0.089 0.127 0.119 0.113 0.099 0.117 0.128 0.086 0.096 0.081 0.139

Pearson 0.874 0.786 0.823 0.786 0.745 0.775 0.746 0.886 0.843 0.891 0.683

Spearman 0.821 0.815 0.796 0.804 0.773 0.698 0.755 0.865 0.821 0.841 0.558

Outlier ratio 0.71 0.72 0.61 0.72 0.59 0.66 0.59 0.71 0.67 0.63 0.77
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mixed method approach, combining quantitative and
qualitative data, has been described in [97,98].

6. Perceptual-based audio–visual quality metrics

In the preceding sections, we have investigated and
analyzed a number of audio quality and video quality
metrics. These methods assume only a single modality,
either video or audio. Nevertheless, it has been shown by
subjective tests (e.g. in [30]) that there is a strong mutual
influence between audio and video on the experienced
overall quality. At present, there is no reliable metric
available for measuring the audio–visual quality auto-
matically. In order to produce a reliable and accurate
audio–visual metric, one must develop a firm under-
standing of the human perceptual processes first [29]. A
number of methods have been proposed for performing
user studies of the audio–visual quality, but there still
remains a gap in defining the perceptual and cognitive
basis of audio–visual quality assessment [98,99]. For an
understanding of how subjects perceive audio–visual
quality, it seems fundamental to research how auditory
and visual stimuli are perceived, and at what stage in the
human perceptual process they are fused to form a single
overall quality experience.

6.1. Mutual influence between AQ, VQ, and AVQ

A series of subjective experiments have been con-
ducted to study the mutual influence between AQ, VQ,
and AVQ since the 1990s. As mentioned before, the
qualities of five different presentations in Table 1 could be
evaluated for analyzing the mutual influence between AQ,
VQ, and AVQ. In the experiment conducted by Beerends
and De Caluwe. [30], it was shown that AQ_V and VQ_A
did not immediately improve the prediction of the audio–
visual quality. Therefore, most experiments have been
conducted for assessing AQ, VQ, and AVQ, and exploring
their relationship. Such experiments try to derive AVQ
according to AQ and VQ, but the influence of one modality
on the other modality is not investigated. Consequently,
most of the research has been concentrated on deriving a
model to conclude AVQ from AQ and VQ. A commonly
used fusion model [30–33] is

AVQ ¼ a0þa1AQþa2VQþa3AQVQ ð3Þ

where the parameters {a1, a2, a3} denote different weights
of audio and video quality, as well as the multiplication
factor for the overall quality. The parameter a0 is
irrelevant to the correlation between the predictive
quality and the perceived quality, but it improves the fit
in terms of the residual between them. The overall audio-
visual quality is influenced by a couple of factors, in which
the individual AQ and VQ are the most important.
Synchronicity, i.e. the offset between the audio and video
stimuli, is another key element.

Hayashi et al. [100] proposed to take audio–video
synchronization into account in the fusion model. Quality
degradation (DQ) due to audio–visual delay for video-
phone services is derived, and the perceived multimedia

quality is computed from AVQ and DQ using a similar
fusion method as presented in Eq. (3).

The results of a quality assessment can also be affected
by some other factors, such as the goal of the assessment,
the testing environment, and the test methodology
[101,102]. However, it is hard to model these external
factors in a computable approach. Moreover, as stated
earlier, we assumed perfectly lip-synchronized stimuli in
this study. Hence, we concentrate on investigating the
mutual influence of AQ and VQ on the AVQ for
spatiotemporally coherent audio–visual systems in the
following paragraphs.

Although the fusion method in Eq. (3) has been
recognized by many researchers, there are no commonly
agreed values or derivations for the four fusion
parameters. Instead, the optimal values of the fusion
parameters are different in various studies for different
audio–visual content items. Table 6 summarizes the fusion
parameters that we are able to find in the literature.

Early studies proposed AVQ models based on the
multiplication of AQ and VQ [30,33], and the additive
item, as in Eq. (4). These methods achieved promising
results with most of the variation seen in the additive
parameter a0.

AVQ ¼ a0þa3AQVQ ð4Þ

This type of fusion is in accordance with some studies
on the human cognitive understanding, indicating that
aural and visual information might be combined in an
early phase of the human perception formation [105].
Nevertheless, fusion using single multiplication as in
Eq. (4) does not reflect the differences in the influence
of auditory-only and visual-only stimuli on the overall
quality. Actually, a number of subjective assessments
indicate that the influence of audio and video on the
overall quality is unbalanced [30–34]. In these assess-
ments, video quality dominates the overall quality in
general. Audio seems to be more important than video
under certain special circumstances only, such as in video
conference situations, and in music TV.

In order to investigate the fusion parameters for the
derivation of AVQ, we collected all subjective scores of AQ,
VQ, and AVQ from the publications listed in Table 6.
Because most literature on this issue reports the sub-
jective quality scores in figures rather than score values
explicitly, we employed a software named GetData Graph
Digitizer [106] to extract the score values from the figures.
After that, we performed the same analysis as in the
original references, e.g. computation of correlation coeffi-
cients. Whenever we obtained the same as or very close
results to the original references, i.e. the difference
between our results and the results in the original
references was below a very small threshold (e.g. 0.02).
The extracted score values were used in our evaluation. In
contrast, if the extracted scores could not exhibit
attributes similar to those in the original references, they
were excluded. In addition, the original experimental
conditions, such as audio–visual content category and bit
rates, were also gathered when the literature described
them explicitly. The analysis of our investigation is
presented in the following paragraphs.
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The test conditions, materials, and methodologies of
these experiments differed from each other. Thus, the
obtained fusion parameters were different in different
experiments. However, according to the obtained correla-
tion coefficients in Table 6, the fusion model in Eq. (3)
works well in all experiments. Therefore, we conclude
that it is feasible to combine all experimental results and
then perform a correlation analysis. In addition, because
the ranges of the rating scales were different, all
subjective scores were rescaled into 9-point scales, i.e.,
the quality scale interval was set to [1,9]. The following
function was used to rescale the subjective scores.

S¼ 8
S0�Sbest

Sbest�Sworst
þ9 ð5Þ

where S and S0 denote the rescaled score and original
score, respectively. Sbest is the limit corresponding to the
best quality of the original scale, and Sworst denotes the
limit corresponding to the worst quality.

After rescaling the quality values, the Pearson linear
correlation coefficient (R) and RMSE were used for the
correlation analysis. A multivariable regression algorithm
was applied to find the best fusion parameters in Eq. (3),
in which the correlation was maximized whilst the RMSE
was minimized. Moreover, to make the analysis results
easier to compare, we limited the weights of the fusion
parameters {a1, a2, a3} to the interval [0,1], whereas the
additive parameter a0 was allowed to be out of this range.
It should be noted that such limitations might introduce a
bias for the correlation analysis. Therefore, we have also
performed an analysis without such constraints. The
experimental results obtained were very similar to the
results in this paper. Thus, we report the results with such
constraints on the fusion parameters, because then we
can clearly see the difference between different classes.

An analysis on all test clips was performed. The
correlation R and RMSE were 0.55 and 1.85 between AQ
and AVQ, respectively, and 0.83 and 1.2 between VQ and

AVQ, respectively. According to the correlation analysis,
both AQ and VQ have a significant effect on the overall
quality. A clear dominance of the video quality is observed
in general. Furthermore, the correlation between the
multiplication AQ�VQ and AVQ is 0.93, which indicates
that the multiplication has the most significant influence on
AVQ. This is in accordance with the experimental results in
[30,33]. Even after the quality fusion in Eq. (3) with optimal
parameters, the correlation increased only marginally, from
0.93 to 0.95. The results therefore indicate that for a general
audio–visual quality metric, the multiplication of AQ and
VQ is adequate for predicting the tendency of the overall
quality, whereas the weight a3 and the additive constant a0

can improve the prediction accuracy.
In order to study the mutual influence under different

conditions of compression settings and degradation
strengths, we analyzed the correlation and derived the
optimal fusion parameters for groups of test cases. Two
different classification criteria were used: bitrate and
subjective quality level. For dividing the test clips into
different groups according to the bitrates, two empirical
thresholds, 24 and 64 kbps, were used for the audio and
video bitrates, respectively. These empirical thresholds
stem from an informal subjective test in which five
subjects were asked to give a threshold of bit rate at
which they could clearly perceive the difference when the
audio or video was encoded below and above the bit rate.
For the grouping according to quality levels, we divided
the quality scale interval [1,9] into three equal parts. The
analysis results are presented in Tables 7 and 8 for bitrate
classes and quality level classes, respectively.

Based on our analysis on the mutual influence between
AQ, VQ, and AVQ, some general conclusions can be drawn
as follows:

� Both audio quality and video quality contribute to the
overall audio–visual quality, and their multiplication
has the highest correlation with the overall quality. So,

Table 6
Overview of fusion parameters for audio–visual quality assessment.

Laboratory a0 a1 a2 a3 Correlation Methodology Rating scale Reference

KPN 1.12 0.007 0.24 0.088 0.98 ACR [1,9] [30]

1.45 0 0 0.11 0.97

Bellcore 1.07 0 0 0.111 0.99 [31]

1.295 0 0 0.107 0.99

ITS �0.677 0.217 0.888 0 0.978 [1,5] [32]

1.514 0 0 0.121 0.927

0.517 �0.0058 0.654 0.042 0.98

NTT 1.17 �0.144 0.186 0.154 0.96 [100]

0.908 �0.192 0.258 0.193 0.96

ICRFE �0.9222 0.5691 0.5064 0.1697 0.911 [103]

�0.6313 0.2144 0.0124 0.1184 0.902

BT 1.15 0 0 0.17 0.85 SSQS [34]

0.95 0 0.25 0.15 0.83

4.26 0.59 0.49 0 0.97 DSCQS [0,100]

�3.34 0.85 0.76 �0.01 0.99

EPFL 1.98 0 0 0.103 0.9 ACR [0,10] [36]

�1.51 0.456 0.77 0 0.94

ICU 0 0.38 0.44 0.18 0.95 DCR [104]

0 0.43 0.32 0.26 0.95

0 0.35 0.58 0.07 0.95
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when constructing a general audio–visual quality
metric, the overall quality can be predicted by the
weighted multiplication and an additive shift. The
weight and addition are irrelevant to the correlation,
but they can improve the prediction accuracy.
� Generally, video quality dominates the overall quality,

whereas audio quality is more important for cases in
which the bit rates of coded audio and video are both
low, or the video quality is above a certain quality
threshold. With decrease in audio quality, its influence
on the overall quality is increasing. In addition, for
certain audio–visual contents or applications in which
audio is evidently more important than video, such as
teleconference, news, and eventually music video,
audio quality dominates the overall quality. In such
applications, a greater weight should be assigned to
audio quality when constructing an audio–visual
metric. In other cases, video quality should be given
a greater weight. Then, the audio quality component in

the fusion equation can even be discarded, i.e., the VQ
term and the multiplication AQ�VQ are adequate for
predicting the overall quality.

In addition, there are three different papers that
consider the quality change in one modality in the
presence of the other modality [30,31,102]. Thirty six test
cases were studied in total, and the correlation results for
the quality of one modality in the presence of the other
are: R(AQ_V, AQ)=0.991, R(AQ_V, VQ)=0.365, and R(VQ_A,
AQ)=0.374, R(VQ_A, VQ)=0.992. Therefore, when measur-
ing individual audio or video quality in audio–visual
stimuli, the influence of the other modality might be
small, but cannot be neglected totally. The magnitude of
the impact of the presence of the other modality seems to
be similar for both audio and video, i.e., R(AQ_V,
VQ)ER(VQ_A, AQ).

Finally, in our analysis of previous experiments, we also
found that the mutual influence between AQ and VQ may
depend on the video characteristics. The higher the motion

Table 7
Correlation analysis for AQ, VQ, and AVQ for different bitrate classes.

Audio bitrate Video

bitrate

Number

of clips

R/RMSE

(AQ, AVQ)

R/RMSE

(VQ, AVQ)

R(AQ�

VQ, AVQ)

Best fusion

parameters

{ a0, a1, a2, a3}

R/RMSE

(AVQ_P, AVQ)

Low r24 kbps All 44 0.22/1.60 0.82/1.10 0.90 �0.03, 0.14, 0.45, 0.07 0.94/0.42

r64 kbps 24 0.67/0.98 0.47/1.07 0.92 �0.2, 0.2, 0.43, 0.07 0.94/0.3

464 kbps 20 �0.23/2.1 0.93/1.1 0.87 1.1, 0, 0.38, 0.05 0.95/0.4

High 424 kbps All 100 0.42/1.98 0.88/1.03 0.91 0.84, 0.09, 0.43, 0.05 0.94/0.6

r64 kbps 24 �0.27/1.8 0.91/0.59 0.81 3.62, 0, 0.35, 0 0.91/0.49

464 kbps 76 0.43/2.03 0.88/1.13 0.91 0.8, 0.1, 0.43, 0.05 0.94/0.66

All r64 kbps 48 0.67/1.45 0.55/0.86 0.90 �0.23, 0.21, 0.52, 0.05 0.93/0.35

464 kbps 96 0.43/2.05 0.88/1.13 0.92 0.94, 0.05, 0.39, 0.06 0.95/0.63

(R and RMSE denote the Pearson correlation coefficient and the root-mean-square error, respectively, between the indicated quality measures. AQ, VQ, AVQ

denote the subjective measure of the audio, video, and audio–visual qualities, respectively, and AVQ_P is the quality predicted from AQ and VQ with the

fusion method in which the best fusion parameters are derived by the multivariable regression analysis. The use of italics denotes that AQ dominates AVQ.)

Table 8
Correlation analysis for AQ, VQ, and AVQ for different quality level classes.

AQ level VQ

level

Number

of clips

R/RMSE

(AQ, AVQ)

R/RMSE

(VQ, AVQ)

R(AQ�

VQ, AVQ)

Best fusion

parameters { a0, a1, a2, a3}

R/RMSE

(AVQ_P, AVQ)

Low [1�3.3] All 44 0.33/1.27 0.86/1.91 0.88 �0.02, 0.49, 0.42, 0 0.89/0.48

Low 14 0.35/0.86 0.9/0.36 0.74 0.68, 0.07, 0.58, 0 0.91/0.28

Middle 21 0.31/1.15 0.6/1.42 0.57 0.82, 0.13, �2.15, 0 0.67/0.63

High 9 0.84/1.9 �0.03/3.6 0.84 �0.13, 0.99, 0.25, 0 0.87/0.37

Mid. [3.3�6.6] All 99 0.24/1.74 0.92/0.94 0.94 1.04, 0.05, 0.31, 0.08 0.94/0.56

Low 32 0.13/2.44 0.82/0.62 0.80 2.15, 0.03, 0.18, 0 0.84/0.61

Middle 40 0.52/0.92 0.77/0.61 0.82 0.25, 0, 0.39, 0.11 0.84/0.53

High 27 0.63/1.67 0.02/1.48 0.57 1.16, 0.85, 0, 0.03 0.64/0.66

High [6.6�9] All 65 0.31/2.29 0.94/0.93 0.95 �1.96, 0.43, 0.87, 0 0.95/0.56

Low 13 0.20/3.87 0.74/1.33 0.78 2.42, 0, 0, 0.07 0.78/0.47

Middle 33 0.47/2.01 0.61/0.89 0.73 �0.61, 0.4, 0.57, 0.01 0.74/0.54

High 19 0.49/0.81 0.74/0.63 0.82 4.99, 0.15, 0.23, 0 0.85/0.47

All Low 59 0.6/2.59 0.7/0.8 0.86 �0.13, 0.23, 0.71, 0.01 0.89/0.4

Middle 94 0.73/1.44 0.5/0.94 0.85 0.62, 0.17, 0.42, 0.05 0.87/0.53

High 55 0.9/1.48 0.11/1.83 0.90 �1.32, 0.67, 0, 0.09 0.91/1.65
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and the more complex the picture content is, the more
dominance of the video quality is observed. So, motion
information and picture complexity should be taken into
account in developing an audio–visual quality metric.

In summary, we may classify the influence factors of
audio–visual quality into three levels. Influence factors of
level 1 are those related to the generation of audio–visual
stimuli, such as the loudspeaker and visual reproduction
setup, as well as the content itself. Influence factors of
level 2 affect sensory perception, which involves the
physiology of the user (acuity of hearing and vision,
masking effect caused by limited resolution of the human
sensors, etc.) as well as all other factors directly related
to the physical perception of stimuli. Influence factors of

level 3 are related to the processing and interpretation
of the perceived stimuli, which span the widest range
of factors: experience, expectations, and background of
subjects; task; degree of interactivity (if any); type of
application; etc. [29,107].

6.2. Relevant issues and trends in audio–visual quality

metrics

The first issue in developing an audio–visual quality
metric is the interactive process of multiple modalities. In
order to understand the multi-modal perceptual fusion, it
is worth-looking at modern theories of attention. These
can be basically classified into two approaches: early
selection and late selection [105]. In the early selection
theory, all stimuli that reach the sensory system are
processed until individual physical attributes are expli-
citly represented. In the study of attention, this is called
‘‘Broadbent’s Filter theory’’ [108]. If we transfer this
concept to the realm of quality perception, we may
deduct that an overall perceived quality impression must
then be a function of the individual attributes. A fusion or
binding of individual quality attributes takes place at the
end of the processing chain hence this theory is called late
fusion. Some other experiments support that the auditory
and visual stimuli can be integrated at the quality level.
Opposed to this, late selection theory in attention argues
that the recognition of familiar objects proceeds unselec-
tively, as one cannot voluntarily choose to (or refuse to)
recognize or identify something. All available input is
processed to result in the representation of a perceptual
object generated from a fused set of attributes. As a
consequence, an overall quality impression must then be
the result of analyzing the perceptual object as a whole,
i.e. audio–visual fusion takes place at an earlier stage than
quality level, which is called early fusion. Many experi-
ments support this conclusion.

However, in the latter case, i.e. early fusion, the
construction of audio–visual quality models seems to be
very complicated. It means that we need to consider
not only the quality distortion between distorted and
reference signals of an individual stimulus, but also the
influence between different modalities. This suggests that
an objective audio–visual quality metric should be
represented as a joint function, Q (audio, video), rather
than a separate function [Q (audio), Q (video)]. Hence, an

appropriate cognition model should be constructed so
that it can process audio and video signals simulta-
neously, and take into account the cross-modal influences.
However, such a cognitive model may be very complex
and cannot be used in real-time applications.

Here, we assume that the human brain perceives the
auditory and visual stimuli independently at a certain
point in time or during a very short duration. This means
that fusion is assumed to occur at the quality level at
this point in time or during this duration, if we cite the
concept of limit in mathematics. In this approach, we do
not need to consider the influence of a modality on the
individual quality of the other modality. Currently, most
studies on audio–visual quality assessment adopt the late
fusion theory, presumably because it is easier to handle.
Whether or not this approach is correct is a topic of
ongoing research.

Therefore, applying the late fusion theory, we can
construct audio–visual quality models in an engineering
approach in two steps: find an appropriate fusion model
or appropriate fusion parameters using Eq. (3) to compute
the overall audio–visual quality based on audio quality
and video quality in a short temporal segment; find an
appropriate time averaging method to pool the quality
values over all segments into an overall quality of a whole
audio–visual sequence. The first step can be figured out
according to the analysis on the mutual influence. At
present, there is no definite solution for solving the
second step. For example, PEAQ uses linear, squared and
windowed averages for the temporal averaging. More-
over, most existing video metrics are proposed for
measuring short sequences with a single scene, in which
methods such as Minkowski summation or directive
averaging are used. These methods, however, may be
inappropriate for long-term sequences with multiple
complex scenes. Therefore, temporal averaging is still an
open issue, and it will lead to the second issue relevant for
the development of audio–visual metrics – semantic
analysis of content.

Semantic analysis for audio–visual content has been
studied for several decades. It is mainly applied in
audio–visual retrieval, management, summarization, etc.
[109,110]. Actually, it is suspected that semantic audio–
visual importance is strongly related to perceived quality.
Yet, this topic is relatively unexplored. Most audio and
video quality metrics are based on the perceptual
perspective, for example, the existing FR metrics usually
predict the difference between the reference and distorted
signals from the viewpoint of the human perception.
However, even when perceptual quality is reduced (e.g.
lower frame rate), subjects may understand the content
and the perceived quality is thought to be unchanged
[111]. There has been some work focused partially on this
topic. Cucchiara et al. [112] proposed to encode video
objects with different perceptual fidelities based on the
importance of objects, and the overall quality was
evaluated using an object-weighted MSE measure. Thang
et al. thought that the overall quality consists of
perceptual quality (PQ) and semantic quality (SQ), and
the overall quality is regarded as a weighted linear
combination of PQ and SQ. They applied graph theory in
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modeling the relationship between the overall quality, PQ
and SQ in [113,114]. The semantic quality mainly models
the perceived amount of information conveyed by audio–
visual signals, regardless of how the signals are presented,
whereas the perceptual quality is defined as the satisfac-
tion of a subject perceiving the signals, regardless of what
information is conveyed. Further, Hanjalic and Xu, [115]
thought that video content should be modeled at two
different levels: cognitive and affective levels, in which
the former is to model how a subject perceives video
content, and the latter is to define the affective character-
istics of video content. We believe that different affections
caused by audio–visual content may lead to different
impacts on the perceived quality for different subjects. For
example, an optimistic subject may like more a comedy
segment, such that he/she will give a more positive
quality score on the comedy segment than on tragedy
segments. Of course, an optimistic subject may also give a
more negative quality score for the comedy segment
because he/she has stricter demand for this kind of
segments. In addition, semantic importance analysis can
also be applied in the temporal averaging over all time
segments, as mentioned in the previous paragraph. A time
segment with more important semantic content should be
assigned a bigger weight when performing time aver-
aging. Synthetically, we can assume that an overall quality
consists of a combination of perceived quality and
semantic or affective importance, in which the former is
evaluated by audio–visual quality metrics, whereas the
latter can be derived from content analysis. Based on the
analysis of the mutual influence between audio and video
quality, of the relationship between perceived quality and
semantic information, as well as the time averaging, we
suggest that a perceptual quality model can be con-
structed in the following paradigmatic form:

OQ ¼
X

i

WiSiða0þa1AQþa2VQþa3AQVQ Þi ð6Þ

where OQ denotes the overall audio–visual quality of an
audio–visual sequence; i denotes different segments
whose duration might be different from each other
because of different audio–visual contents; Wi represents
a weight of this segment, which is affected by some
external factors and quality level, e.g. different quality
levels make different contributions to the overall quality
[81,82]; Si denotes the semantic importance of a segment

derived from a content analysis model; and S represents
time averaging, which might be a direct average. It is
noticed that the fusion parameters {a0, a1, a2, a3} might be
different in different segments. Fig. 1 illustrates an audio–
visual quality model, taking into account the semantic
information and other influence factors. The grayed-out
blocks denote a potential quality drop caused by
unsynchronized audio and video signals.

A reasonable simplification of Eq. (6), which can be
applied in practical systems, is a combination of semantic
analysis and a simple quality metric such as PSNR. Although
PSNR is not always correlating well with results obtained
from subjective quality evaluations, we believe that a
suitable integration of semantic analysis into PSNR could
improve the predictive accuracy of this type of simple
metrics. For example, we have found that the accuracy of
predicting the video quality can be increased by integrating
the information of spatial and temporal activities into PSNR
[116]. Furthermore, as an important neurophysiologic con-
cept, human attention is an indispensable factor in con-
structing the semantic analysis model as well as the quality
metric [79,84]. In addition, we have mentioned above that
AQ and VQ have different influence on the overall AVQ in
certain situations, in which audio and video have different
importance levels, for example in music video and tele-
conference sequences. Therefore, constructing a semantic
analysis model for comparing the importance between the
audio and video is also important. This topic on the
relationship analysis between semantic audio–visual analy-
sis and quality assessment will be studied further in our
future work.

For the temporal averaging, another issue should be
taken into account, i.e. different contributions of temporal
segments with different quality levels to the overall quality.
The human perceptual system is usually more sensitive to
large impairments. Our experiment in [82] demonstrated
that bigger weights should be assigned to the segments
suffering from severe impairment. We have also investigated
different spatial and temporal averaging methods by using
some image quality metrics to predict the quality of packet
loss video streams [117]. Our experimental results indicated
that the human perception on video quality is mainly
influenced by those regions and frames with the most severe
distortions. The NTIA model [49,81] uses spatial and
temporal collapsing functions to express such characteristic.
However, this issue is not studied adequately, and more

Fig. 1. Flowchart of an audio–visual quality metric taking into account the semantic analysis and other influence factors in quality assessment.
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subjective measurements analyzing the influence of different
quality levels on the overall quality perception are required,
as well as a thorough investigation of the corresponding
psychophysical knowledge.

No uniform fusion parameters for Eq. (3) have been found
so far, and the fusion parameters are strongly correlating
with audio–visual content and other factors. As mentioned
before, semantic content analysis might be helpful to find
appropriate weights of audio and video, in evaluating the
overall audio–visual quality. For example, the concept of
entropy can express the information conveyed in audio or
video signals. Thus, we may assume that the fusion model or
its parameters can be obtained automatically, based on an
analysis of audio–visual content. In this case, the regression
operation between the model results and the subjective
quality results will not be required to find the fusion
parameters, since it is supposed that subjective quality
results are not available in developing objective quality
metrics. This topic will also be studied in our future work.

For the audio-only and video-only quality metrics, there
are some issues that have not been studied adequately. At
the same bit rates, one video sequence with a larger size is
usually allocated fewer bits for every frame than a sequence
with a smaller size, such that the computed quality of the
former is lower than the latter. However, subjects usually
prefer a large image size because it can potentially provide
more details. Our earlier subjective experiment [118]
demonstrated that the perceived quality of a video sequence
with CIF resolution coded at 384 kbps and 12.5 fps is rated
higher than the same video with QCIF resolution coded at
384 kbps and 25 fps. However, the quality as computed by
the NTIA model is lower for the former than for the latter. A
similar phenomenon is found in audio quality measure-
ments. VQEG has conducted the validation of quality metrics
for multimedia assessment with three different resolutions,
including VGA, CIF, QCIF, whereas the performance was
analyzed for video sequences with the same resolution
[18,21]. So, determining how to integrate the factors such as
image size, frame rate, number of audio channels, sample
rate, etc. into an overall quality metric is another important
but unresolved issue.

Last but not the least, the contribution of quality
metrics on the performance improvement of audio–visual
services should be studied further. Although a quality
metric would originally be proposed to evaluate the
quality of the distorted signals, it may also be applied for
improving coding schemes, transmission abilities, etc. For
example, Yang et al. [72] proposed to use a JND-adaptive
motion estimation scheme and residue filtering for rate
control. All of these can improve the overall performance
of a video coding scheme. In addition, a quality metric has
wide applications in mode decision, as well as in error
concealment in audio and video encoding and decoding.
Although several methods have been proposed in this
area, more work needs to be performed in the future.

7. Conclusions

We surveyed perceptual-based audio and video quality
assessment methods in this paper. The main existing

methods were introduced and analyzed, and the experi-
mental results with respect to subjective assessment
were presented. Alignment of audio and video signals
and audio–video synchronization were reviewed. For
audio quality metrics, we mainly concentrated on PEAQ
and some improvement methods as well as two simple
metrics. The basic version of PEAQ was implemented and
validated by the conformance test using standard audio
sequences, and the performance of PEAQ in different
sample rates was also tested. Furthermore, we tested the
performance of some metrics on parametric audio coding
schemes, while no reliable metrics for parametric coding
have been found. For objective video quality metrics, we
investigated FR and RR models in psychophysical and
engineering approaches. Experiments with respect to the
available subjective assessment results were performed to
analyze and evaluate the performance of the existing FR
and RR models and our proposed metrics. The experi-
mental results demonstrated that the current objective
quality metrics still cannot replace subjective quality
assessment, although their performance is comparatively
promising. Possible improvements for future develop-
ment were also discussed. Subjective audio–visual quality
methodologies and ITU recommendations were also
investigated. Finally, the mutual influence among audio
quality, video quality, and overall audio–visual quality
was studied, and some general conclusions were drawn.
The relevant issues in developing perceptual-based audio-
visual metrics were investigated and some trends were
presented. Although this paper tried to provide a
comprehensive survey of the perceptual-based audio–
visual quality metrics, some issues have not been
included, such as quality degradation caused by packet
losses in transmission. These topics will be studied in
future work.

The quality metrics for individual audio and video
modalities have been studied for several years, while the
audio–visual quality is a relatively unexplored issue.
Furthermore, the studies on quality assessment of multi-
modality, and multiparty for wideband applications have
just been started [119]. These issues are closely correlated
with the psychophysical and psychoacoustic knowledge,
and there still remains a big gap between these two
scientific disciplines and quality assessment. For example,
it is still unknown whether early fusion or late fusion
between audio and video dominate the human perception
in audio–visual quality assessment. As we have high-
lighted in this survey paper, many interesting quality
measurement approaches and improvements have been
proposed, and several standards have been made or are in
the making. Nonetheless, we are still a long way from
audio–visual quality metrics that are widely applicable
and universally recognized.
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