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Abstract Perceptual quality assessment plays a vital role in the visual communication systems owing to

the existence of quality degradations introduced in various stages of visual signal acquisition, compression,

transmission and display. Quality assessment for visual signals can be performed subjectively and objectively,

and objective quality assessment is usually preferred owing to its high efficiency and easy deployment. A large

number of subjective and objective visual quality assessment studies have been conducted during recent years.

In this survey, we give an up-to-date and comprehensive review of these studies. Specifically, the frequently

used subjective image quality assessment databases are first reviewed, as they serve as the validation set for

the objective measures. Second, the objective image quality assessment measures are classified and reviewed

according to the applications and the methodologies utilized in the quality measures. Third, the performances

of the state-of-the-art quality measures for visual signals are compared with an introduction of the evaluation

protocols. This survey provides a general overview of classical algorithms and recent progresses in the field

of perceptual image quality assessment.
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1 Introduction

It is estimated that 1.2 trillion digital images were taken in 2017, thanks to the popularization of smart-

phones. In almost every stage of the visual communication systems, e.g., acquisition, compression, trans-

mission, and display, various types of distortions are introduced. Quality assessment is needed to ensure

and improve the quality of visual contents delivered to the end-users. Quality assessment metrics can be

used as testing criteria or optimization goals for the visual communication systems. Quality assessment

methods can be categorized into subjective and objective ones. Subjective assessment is usually consid-

ered as the most reliable and accurate because the human visual system (HVS) is the ultimate receiver

of visual signals in most visual communication systems. However, subjective test is time-consuming and

expensive, and cannot be directly embedded into a practical system as the optimization metric. Ob-

jective quality assessment methods, usually designed and/or trained using subjective assessment data,

can predict the visual quality automatically, and are ideal for timely system performance evaluation and

optimization.

Image and video are two types of visual contents to be transmitted by visual communication systems.

In this survey, we focus on image quality assessment (IQA) owing to the following two reasons: first, a

majority of research work is about images; second, image quality metrics usually serve as bases for video

quality assessment (VQA) considering that videos are sequences of images.
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1.1 Related surveys

Over the past two decades, with the repaid flourishing of visual media, a large number of IQA metrics

have been proposed, which call for a survey of the field. In 2009, Wang and Bovik [1] gave an analysis of

full-reference (FR) image fidelity measure, with a pivot on mean square error (MSE). Wang and Bovik [2]

later gave a more general introduction to reduced-reference (RR) and no-reference (NR) IQA, but only

a limited number of metrics were reviewed. Lin and Kuo [3] gave a survey on perceptual visual quality

metrics in 2011. They discussed several key problems related to IQA, including signal decomposition, just-

noticeable distortion, visual attention, feature and artifact detection, feature pooling, viewing condition,

computer-generated signal, and visual attention.

In 2011, Moorthy and Bovik [4] shared their vision of the future of visual quality assessment research,

with a small number of IQA measures reviewed. Chandler [5] gave a systematic review in 2013. The first

half of this review discusses key properties of visual perception, IQA databases, existing IQA algorithms.

The second half of this article highlights several open challenges in the field. Generally, the survey focuses

more on the problems and challenges of IQA rather than review of algorithms. In 2013, He et al. [6]

briefly introduced the history and developments of IQA metrics, with a relatively small number (about

two dozens) of IQA metrics involved.

In 2014, Mohammadi et al. [7] reviewed both subjective and objective IQA methods, with a focus

on 9 classic FR IQA measures, as well as two emerging directions: high dynamic range (HDR) and 3D

IQA. Manap and Shao [8] reviewed generally-purpose NR IQA in 2015, also with small number of very

popular algorithms. In 2017, Xu et al. [9] reviewed both distortion-specific and general-purpose NR IQA

measures, but the scope of the reviewed measures was also limited.

Besides the objective IQA measures, some review studies have summarized the subjective IQA

databases. Winkler [10] gave an analysis of public image and video databases for visual quality as-

sessment in 2012, with a comparison of source contents, distortion processes, and subjective ratings.

In 2013, Winkler and Subramanian [11] gave an overview of eye tracking datasets, with some of which

related to IQA because IQA and visual attention are two closely related research areas.

1.2 Need for a new survey

A comprehensive and up-to-date survey is needed because the current surveys have the following limita-

tions.

First, the reviewed IQA algorithms are small in number and restricted in scope. Most surveys focus on

the classical and well-known IQA measures. Classical IQA measures are important, but a comprehensive

overview of IQA measures is also indispensable. Chandler [5] cited more than 300 papers, but this survey

focused more on the related areas, problems, and challenges of IQA rather than the algorithms. Some

existing surveys concentrate on specific areas, e.g., NR IQA [8,9].

Second, the reviewed IQA measures are not up-to-date. The most recent 2 surveys were published in

2015 and 2017 [8,9]. But these two surveys focused only on NR IQA. Other surveys were published more

than 3 years ago. The recent years have witnessed a great development of IQA. Many new objective IQA

measures have been proposed, which should be analyzed and compared.

Last, some new emerging areas in IQA research are not included. For example, stereoscopic IQA,

saliency-guided IQA, screen content IQA, tone-mapping IQA, multi-exposure fusion IQA, retargeting

IQA, multiply distorted IQA, authentic distortion IQA, dehazing IQA, virtual reality IQA, and many

other topics, all have been intensively researched in recent years. These emerging topics represent new

trends of IQA, but they are missing from almost all current IQA surveys.

Considering the limitations of the current IQA surveys described above, a comprehensive and up-to-

date survey, including not only classical IQA measures but also emerging topics, is in great need for a

better top-down understanding of the history, current state-of-the-art, and future trend of the field. This

survey is written to fulfill that need.
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1.3 Scope and organization of this survey

As limited by pages, we confine our survey pool to encompass only papers published in the last 16 years,

and we specifically include these papers that are considered important but have not been included in

existing surveys. In Section 2, the subjective IQA databases, which are sub-categorized into traditional

and emerging ones, are reviewed. Following that, the traditional and emerging objective IQA measures

are reviewed in Sections 3 and 4, respectively. Emerging IQA measures are classified according to specific

applications, including stereoscopic IQA, saliency-guided IQA, screen content IQA, tone-mapping IQA,

multi-exposure fusion IQA, retargeting IQA, multiply distorted IQA, and authentic distortion IQA, de-

hazing IQA, virtual reality IQA, and many other emerging topics. In Section 5, evaluation process of

IQA measures is discussed, with a comparison of their performances. Section 6 concludes this paper. A

framework of the included topics is illustrated in Figure 1 for an easy navigation through the paper.

2 Subjective image quality assessment databases

Subjective assessment is the most reliable way to evaluate the quality of images, because human eyes

are usually the ultimate receiver of the images. Subjective quality assessment involves the processes

of viewing environment setup, subjects recruitment, subjects grading, and processing of the subjective

results, as suggested by ITU-R BT.500 [12]. The subjective IQA databases are used to train and test

objective IQA metrics. In this section, a total of 40 IQA databases are reviewed, which are categorized into

traditional and emerging databases according to the image content types and the underlying applications.

Basically, traditional IQA databases are built for general-purpose IQA, whereas emerging IQA databases

are generally designed for some specific IQA problems and applications.

Table 1 [13–41,41–51] gives an overview of 40 databases that are widely used in the research of visual

quality assessment. Information including the numbers of reference images, distorted images, distortion

types and image resolutions, as well as subjective score types is summarized. Traditionally general

databases generally include regular images distorted by some common distortion types, e.g., JPEG and

JPEG2000 compression, white noise injection, and blurring. While the emerging IQA databases include

3D image, retargeting image, multiple distorted image, screen content image, authentic distortion image,

tone-mapping, view synthesis, dehazing, virtual reality image databases. Detailed information of these

databases can be found below, including the number of source images and distorted images, the distortion

types as well as specifications of subjective viewing tests.

2.1 Traditional databases

• LIVE image quality assessment database [13]. LIVE includes 29 pristine images and 779 distorted

images corrupted by 5 types of distortions, i.e., JPEG compression (JPEG), JPEG2000 compression

(JP2K), white noise (WN), Gaussian blur (GB), and simulated fast fading Rayleigh channel (FF). Each

distortion type contains 5 or 4 distortion levels. Most images are 768× 512 pixels in size.

• Tampere image database 2008 (TID2008) [14]. TID2008 includes 25 pristine images and 1700 dis-

torted images corrupted by 17 types of distortions, with 4 levels for each distortion type. All images have

a fixed resolution of 512× 384.

• Tampere image database 2013 (TID2013) [15]. TID2013 is extended from TID2008 by increasing

the number of distortion levels to 5, and the number of distortion types to 24. Therefore, 3000 distorted

images are generated from 25 pristine images. The subjective testing and data processing steps are similar

to that of TID2008.

• Categorical subjective image quality (CSIQ) database [16]. It contains 30 pristine images and 866

distorted images corrupted by JPEG, JP2K, WN, GB, additive pink Gaussian noise, and global contrast

decrements, with 5 or 4 levels for each distortion type. The resolution is 512× 512.

• IRCCyN/IVC subjective quality assessment database [17]. IVC consists of 10 pristine images and

235 distorted images corrupted by JPEG, JP2K, blur, and locally adaptive resolution coding, with 5 levels
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Figure 1 (Color online) Scope of this paper.

for each distortion type. The resolution is fixed at 512× 512.

• MICT image quality evaluation database [18]. MICT includes 14 pristine images and 168 distorted

images corrupted by JPEG and JP2K, with 6 levels for each distortion type. The resolution is 768× 512.

• A57 database [19]. A57 includes 3 pristine images and 54 distorted images corrupted by 6 types of

distortions, with 3 levels for each distortion type. All images are in gray scale. The resolution is 512×512.

• Waterloo exploration database (WED) [20]. WED includes 4744 pristine natural images and 94880

distorted images corrupted by JPEG, JP2K, GB, and WN, with 5 levels for each distortion type. The

images have various resolutions. No human opinion score is provided, but the authors introduce several

alternative test criteria to evaluate the IQA models.
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Table 1 An overview of IQA databasesa)

Category Database
Year No. No. No. Dist. No. Dist.

Resolution Ground-truth
Ref. Dist. Type Level

LIVE [13] 2004 30 779 5 5 or 4 ∼ 768 × 512 DMOS

TID2008 [14] 2008 25 1700 17 4 512 × 384 MOS

TID2013 [15] 2013 25 3000 24 5 512 × 384 MOS

General
CSIQ [16] 2009 30 866 6 5 or 4 512 × 512 DMOS

IVC [17] 2005 10 54 4 5 512 × 512 MOS

MICT [18] 2001 14 168 2 6 768 × 512 MOS

A57 [19] 2007 3 54 6 3 512 × 512 MOS

WED [20] 2017 4744 94880 4 5 – –

IVC 3D [21] 2009 6 90 3 5 512 × 448 DMOS

LIVE 3D Phase I [22] 2013 20 365 5 – 640 × 360 DMOS

LIVE 3D Phase II [23] 2013 8 360 5 – 640 × 360 DMOS

Waterloo 3D Phase I [24] 2015 6 330 3 – ∼ 1300 × 1100 MOS

Waterloo 3D Phase II [24] 2015 10 460 3 – 1920 × 1080 MOS

3D Ningbo 3D Phase I [25] 2009 10 400 4 – ∼ 1300 × 1100 DMOS

Ningbo 3D Phase II [26] 2011 12 312 5 – 480 × 270 to 1024 × 768 DMOS

Tianjin 3D [27] 2009 30 270 3 – 320 × 240 to 1024 × 768 DMOS

MCL-3D Database [28] 2015 9 693 7 4 1024 × 728 or 1920 × 1080 MOS

IVY 3D [29] 2013 – 120 1 – 1920 × 1080 MOS

MMSP 3D [30] 2010 – 54 1 6 1920 × 1080 MOS

Retargeting
MIT RetargetMe [31] 2012 37 296 8 – – Pair-wise

CUHK Retargeting [32] 2012 57 171 10 – – MOS

Multiple LIVEMD [33] 2012 15 405 2 – 1280 × 720 DMOS

Distortions MDID2013 [34] 2013 12 324 – – 768 × 512 or 1280 × 720 DMOS

MDID2016 [35] 2016 20 1600 – – 512 × 384 MOS

Screen content

SIQAD [36] 2014 20 980 7 7 ∼ 700 × 700 DMOS

SCIQ [37] 2017 40 1800 9 5 1280 × 720 MOS

CCT [38] 2017 72 1320 2 11 1280 × 720 to 1920 × 1080 MOS

HSNID [39] 2019 20 600 6 5 – MOS

Authentic
LIVE Wild [40] 2016 0 1162 – – 500 × 500 MOS

CID2013 [41] 2015 0 480 – – 1600 × 1200 MOS

Tone-mapping TMID [42] 2013 15 120 8 – – Rank

& MEF ESPL-LIVE HDR [43] 2017 605 1811 11 – 960 × 540 to 304 × 540 MOS

MEF [44] 2015 17 136 8 – 340 × 512 MOS

View synthesis IRCCyN/IVC DIBR [45] 2011 12 84 7 – 1024 × 768 DMOS

DHQ [46] 2019 250 1750 7 – – MOS

Dehazing SHRQ [47] 2019 75 600 8 – – MOS

IVC Dehazed Image [48] 2015 25 200 8 – – MOS

OIQA [49] 2018 16 320 4 5 11332 × 5666 to 13320 × 6660 MOS

VR CVIQ [50] 2019 16 528 3 11 4096 × 2048 MOS

LIVE 3D VR IQA [51] 2019 15 450 6 5 4096 × 2048 DMOS

a) No.: Number of; Ref.: Reference; Dist.: Distortion.

2.2 Emerging databases

The databases for emerging IQA problems in this subsection are organized by applications in accordance

with the algorithms to be reviewed in Section 4.

2.2.1 3D IQA databases

• IRCCyN/IVC 3D image quality database [21]. IVC 3D is the first public 3D image quality database.

A total of 6 stereo images and 90 degraded images are corrupted by symmetrical JPEG, JP2K, and GB

distortions, with 5 levels for each distortion type. The resolution is 512× 448.



Zhai G T, et al. Sci China Inf Sci November 2020 Vol. 63 211301:6

• LIVE 3D image quality database [22, 23]. LIVE 3D is introduced in two phases. Phase I includes

20 pristine stereopairs and 365 symmetrically distorted stereopairs, while phase II includes 8 pristine

stereopairs and 360 symmetrically and asymmetrically distorted stereopairs. Both phases use the five

distortion types similar to the LIVE IQA database. The resolution is 640× 360.

• Waterloo IVC 3D image quality database [24]. Waterloo IVC 3D is also introduced in two phases.

Phase I includes 6 pristine stereopairs and 78 distorted single-view images and 330 symmetrically and

asymmetrically distorted stereopairs. The resolution is 1390 × 1100 or 1342 × 1100. Phase II includes

10 pristine stereopairs and 130 distorted single-view images and 460 symmetrically and asymmetrically

distorted stereopairs. The resolution is 1920× 1080. In both phases, WN, GB, and JPEG are introduced

as distortions.

• Ningbo University database [25, 26, 52]. NBU database is also introduced in two phases. Phase I

includes 10 pristine stereopairs 400 asymmetrically distorted stereopairs corrupted by JPEG, JP2K, WN,

and GB. The resolution is around 1300×1100. Phase II includes 12 pristine stereopairs 312 symmetrically

distorted stereopairs corrupted by JPEG, JP2K, WN, GB, and H.264 compression. The image resolution

varies from 480× 270 to 1024× 768.

• Tianjing University database [27]. TJU database contains a total of 30 pristine stereopairs and

270 distorted stereopairs corrupted by symmetrical JPEG, JP2K, and WN. The image resolution varies

from 320× 240 to 1024× 768.

• MCL-3D database [28]. MCL-3D has 693 stereoscopic image pairs generated from 9 image-plus-depth

sources. Distortions including JPEG, JP2K, GB, WN, down-sampling blur, and transmission errors are

added to either the texture image or the depth image. Besides the above distortions, imperfect rendering

is also included. Four levels of distortions are added for each type. The resolution is either 1024× 728 or

1920× 1080.

• IVY LAB 3D image database [29]. In IVY LAB 3D, there are 120 real scenes and human-labeled

visual discomfort provided in a form of MOS. The magnitude of maximum crossed disparity ranges from

0.11◦ to 5.07◦, corresponding to 0 to 285 pixels. The resolution is 1920× 1080.

• MMSP 3D image quality assessment database [30]. MMSP 3D has 9 stereoscopic scenes, and each

scene is captured with 6 different inter-camera distances. All images are JPEG-compressed with a reso-

lution of 1920× 1080.

2.2.2 Retargeting IQA databases

• MIT RetargetMe database [31]. RetargetMe contains 37 source images which have one or more

of the six major retargeting attributes: line/edge, face/people, foreground objects, texture, geometric

structures and symmetry. The retargeted images are created using 8 retargeting operators with 25% or

50% of width or height reduction. Paired comparison tests are conducted, and the corresponding numbers

of times that the retargeted image is favored over others are provided as the subjective scores.

• CUHK image retargeting subjective database [32]. The CUHK database includes 171 retargeted

images generated from 57 natural images. Two more retargeting operators than RetargetMe are used.

Each image is retargeted with 25% or 50% width/height reduction.

2.2.3 Multiply distorted IQA databases

• LIVE multiply distorted (LIVEMD) database [33]. LIVEMD consists of 15 reference images and

405 multiply distorted images. The database includes one/double-fold artifacts. Each multiply distorted

images are corrupted under two multiple distortion scenarios: GB followed by JPEG and GB followed

by WN. All images have a resolution of 1280× 720.

• Multiply distorted image database 2013 (MDID2013) [34]. MDID2013 has a total of 12 pristine

images and 324 distorted images. Each pristine image is corrupted successively by GB, WN, and JPEG.

The images have resolutions of 768× 512 or 1280× 720.

• Multiply distorted image database 2016 (MDID2016) [35]. MDID2016 consists of 20 reference images

and 1600 distorted images. Five distortion types are introduced, i.e., WN, GB, JPEG, JP2K, and contrast
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change (CC). The order of distortions is as follows: GB or CC first, JPEG or JP2K second and WN last.

All distorted images are with random types and levels of distortions. The image resolution is 512× 384.

2.2.4 Screen content IQA databases

• Screen image quality assessment database (SIQAD) [36]. SIQAD includes 20 pristine and 980 dis-

torted screen content images (SCIs). Distortion types include WN, GB, CC, JPEG, JP2K, motion blue

(MB), and layer segmentation based compression, with 7 levels for each type. The images have various

resolutions near 700× 700.

• Screen content image quality (SCIQ) database [37]. SCIQ consists of 40 pristine and 1800 distorted

SCIs corrupted by 9 types of distortions, including WN, GB, MB, CC, JPEG, JP2K, color saturation

change (CSC), color quantization with dithering (CQD), and the screen content coding extension of high

efficiency video coding (HEVC-SCC). Five distortion levels are considered. The resolution is fixed at

1280× 720.

• Cross-content-type (CCT) database [38]. CCT is constructed to conduct cross-content-type IQA

research. CCT consists of 72 pristine and 1320 distorted natural scene images (NSIs), computer graphic

images (CGIs), and SCIs. Two distortion types are considered, i.e., HEVC and HEVC-SCC coding, with

11 distortion levels for each type. The image resolution is either 1920× 1080 or 1280× 720.

• Hybrid screen content and natural scene image database (HSNID) [39]. HSNID has 10 pristine NSIs

and 10 pristine SCIs, and 600 distorted NSIs and SCIs corrupted by WN, GB, MB, CC, JPEG, and

JP2K, with 5 distortion levels for each type.

2.2.5 Authentic distortion IQA databases

• LIVE in the wild image quality challenge database [40]. It includes 1162 authentically distorted

images captured using a variety of mobile devices. Complex real distortions, which are not well-modeled

by the synthetic distortions are included. All images are cropped to the resolution of 500× 500. MOSs

collected via crowdsourcing are provided.

• Camera image database (CID2013) [41]. CID2013 is designed to test no-reference IQA algorithms.

It includes 480 real images captured from 8 typical scenes using 79 consumer cameras and mobile phones.

The images are rated from 5 aspects: the overall quality, sharpness, graininess, lightness, and color

saturation scales. The images are scaled to a size of 1600× 1200.

2.2.6 Tone-mapping IQA databases

• Tone-mapped image database (TMID) [42]. TMID is composed of 120 tone-mapped images gener-

ated from 15 sets of HDR images using 8 different tone mapping operators (TMOs). Subjects are asked

to rank the 8 images in each image set, and the mean ranking scores within the sets are provided.

• ESPL-LIVE HDR image database [43]. It consists of 1811 HDR-processed images created from

605 high quality source HDR scenes using tone-mapping and multi-exposure fusion (MEF). Post-processing

artifacts of HDR image creation are also considered. A total of 11 processing techniques are used. The

image resolution is 960× 540 or 304× 540. MOSs collected via crowdsourcing are provided.

2.2.7 Multi-exposure fusion IQA databases

• Multi-exposure fusion image database [44]. The database includes 136 fused images created from

17 image sets using 8 MEF algorithms. The images have resolutions near 340× 512. Eight fused images

corresponding to the same image set are showed to the subjects at the same time.

• ESPL-LIVE HDR image database [43]. The database includes 710 images created via MEF.

2.2.8 View synthesis IQA database

• IRCCyN/IVC DIBR image database [45]. Depth-image-based-rendering (DIBR) tries to synthesize

a view for any viewpoint given the sparse views and the scene depth. The database consists of 12 reference
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images and 84 synthesized ones created by 7 different DIBR algorithms. All images share the resolution

of 1024× 768, and DMOSs are provided as quality scores.

2.2.9 Dehazing IQA databases

• Dehazing quality (DHQ) database [46]. The DHQ database includes 1750 dehazed images generated

from 250 real hazy images of various haze densities using 7 representative image dehazing algorithms.

All dehazed images are labeled with human rated MOSs.

• Synthetic haze removing quality (SHRQ) database [47]. It consists of two subsets: regular and aerial

image subsets, which include 360 and 240 dehazed images created from 45 and 30 synthetic hazy images

using 8 image dehazing algorithms, respectively. Original haze-free images, dehazed images, and the

MOSs of each dehazed images are provided for dehazing IQA studies.

• Waterloo IVC dehazed image database [48]. A total of 225 images are provided in this database,

including 25 hazy images and 200 dehazed images created from these 25 hazy images using 8 dehazing

algorithms. MOSs of all 225 images are provided.

2.2.10 Virtual reality IQA databases

• Omnidirectional IQA (OIQA) database [49]. The OIQA database includes 16 source omnidirectional

images and 320 distorted ones degraded by 4 common distortion types, namely JPEG, JP2K, GB, and

WN. For each distortion type, 5 levels of distortions are introduced. MOS is provided for each distorted

image. Besides the images and MOSs, the head and eye movement data are also provided in the database.

The resolutions of images range from 11332×5666 to 13320×6660.

• Compressed VR image quality (CVIQ) database [50, 53]. It consists of 16 reference VR images

and 528 compressed VR images generated by using 3 types of compression, including JPEG, H.264, and

H.265. For each distortion type, 11 levels of distortions are introduced. All images are provided at the

resolution of 4096×2048. MOSs of all distorted VR images are also provided.

• LIVE 3D VR IQA database [51]. A total of 450 distorted images obtained from 15 reference 3D

virtual reality (VR) images degraded by 6 types of distortions, including WN, GB, downsampling dis-

tortion, stitching distortion, VP9 compression, and H.265 compression. Most images are provided at the

resolution of 4096×2048. DMOSs of all distorted images are provided.

2.2.11 Visual attention databases for IQA

• TUD image quality database: eye-tracking release 1 [54]. This database provides eye-tracking data

of the 29 pristine images from the LIVE under free-viewing conditions.

• TUD image quality database: eye-tracking release 2 [55]. The database is constructed to study

how people look at images when assessing image quality. Eye-tracking data is collected under both

free-viewing and quality rating conditions.

• TUD image quality database: interactions [56]. The database is constructed to investigate the

deviations of quality scoring saliency from free looking saliency.

• Visual attention for image quality (VAIQ) database [57]. VAIQ provides visual attention data of the

pristine images from the LIVE [13], MICT [18], and IVC [17] databases.

• Visual attention data for IQA databases [58]. It provides visual attention data of the pristine images

from seven widely used IQA databases including the LIVE [13], TID2008 [14], CSIQ [16], MICT [18],

LIVE MD [33], IVC [17], and A57 [19] databases.

3 Objective image quality assessment: traditional topics

In this section, we review the traditional objective IQA measures. These measures are built for general-

purpose IQA, and they are assumed to be able to handle various kinds of distortions, for example the
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Figure 2 (Color online) An illustration of various general distortion types. All distortions included in the TID2013

database [15] are shown in this figure.
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Figure 3 General framework of FR IQA algorithms. Features are extracted from both images, and then the feature

distance is calculated.

distortions shown in Figure 2. According to the availability of the distortion-free reference image, IQA

measures can be categorized as FR, RR, and NR [1,2,4–9]. Each category will be reviewed in this section.

3.1 Full-reference IQA algorithms

The objective of FR IQA is to predict the quality of a target image with full access to the original

reference image. For the most straightforward type of IQA task, many FR IQA measures follow a similar

framework, i.e., feature extraction from both images followed by distance calculation as illustrated in

Figure 3. The features can be collected from either spatial or transform domain, or both. Because

feature extraction is the key step for FR IQA measures, we review IQA metrics using the underlying

features as a lead in the following subsections.

3.1.1 Spatial domain methods

(1) Signal fidelity. Although traditional signal fidelity measures like mean square error (MSE) and peak

signal-to-noise ratio (PSNR) are often challenged because they have no consideration of characteristics

of image signal and the HVS, they are still widely used as FR measures [1]. Given a reference image R

and its distorted version D, MSE is defined as

MSE =
1

MN

M
∑

i=1

N
∑

j=1

[R(i, j)−D(i, j)]2, (1)

where i, j are pixel indexes, and M,N are image height and width. Then PSNR can be written as

PSNR = 10 log10

(

MAXI
2

MSE

)

, (2)

where MAXI is the maximum possible pixel value of the image.

(2) Structural similarity and variants. Considering that the HVS is highly sensitive to the

structural information in images, some measures extract image structures and then compute structural

similarity as the quality. Wang et al. [59] proposed the structural similarity (SSIM) measure, whose

framework is illustrated in Figure 4 [59]. In SSIM, the luminance, contrast and structure features are

extracted, and then the SSIM index is calculated as from the reference image and the distorted image,
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and then the obtained features are integrated by a pooling strategy to derive the quality score:

SSIM(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
·
2σxσy + c2

σ2
x + σ2

y + c2
·
σxy +

c2
2

σxσy +
c2
2

=
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
,

(3)

where the first, second, and third terms in the first line of (3) measure image luminance, contrast and

structure similarity, respectively; µ, σ, σxy are local mean, variance, and covariance; x, y indicate two

images; c1, c2 are small two stabilization constants.

Because the HVS is known to have a multi-resolution processing paradigm for visual inputs, SSIM

is extended to multi-scale SSIM (MS-SSIM) [60]. In SSIM and MS-SSIM, the distortion or feature

similarity map is pooled using an averaging pooling. Wang and Li [61] proposed an information content

weighting strategy for pooling, and used it to improve MSE, PSNR and SSIM. Tan et al. [62] proposed a

perceptually meaningful MSE-SSIM measure by analyzing the relationship between the MSE and SSIM

under an additive noise distortion model. MSE-SSIM is expressed in terms of the variance of the reference

image and the MSE between the reference and distorted images. Wu et al. [63] used the internal generative

mechanism (IGM) of human brain in pooling: the images are decomposed into the predicted portion and

disorderly portion and then SSIM and PSNR are applied to the two portions respectively.

The HVS largely relies on edge information for image interpretation, therefore, image gradients are

found to be very effective for perceptual quality metric. The structural similarity can also be computed

from the gradient domain. Zhang et al. [64] proposed a feature similarity (FSIM) index. In FSIM, phase

congruency (PC) and gradient magnitude (GM) for both images are first extracted, and the similarity is

calculated using the basic form:

s(x, y) =
2fxfy + c

f2
x + f2

y + c
, (4)

where f indicates the feature (PC or GM), c is a stabilization constant. PC similarity and GM similarity

are then multiplied to the FSIM. A perceptual similarity (PSIM) measure is proposed in [65] by measuring

the similarities of micro- and macro-structures which are described by GM maps. Similar to FSIM, color

similarity is also incorporated to strength the PSIM measure. Liu et al. [66] proposed a gradient similarity

(GSIM) index by comparing the similarity of the gradient values using the similarity form shown in (4).

Xue et al. [67] first computed gradient magnitude similarity (GMS) map, and then designed a gradient

magnitude similarity mean (GMSM) measure via average pooling and a gradient magnitude similarity

deviation (GMSD) by computing the standard deviation of the GMS map. Zhu et al. [68] proposed a

measure using visual gradient similarity (VGS). They proposed a multi-scale global contrast registration

method, and conducted a point-wise comparison by multiplying the similarity of gradient direction and

magnitude of reference and distorted images.

(3) Other structure and edge based features. Zhan et al. [69] evaluated image quality through

combining the distribution of different structural distortion types and the degree of structural differences.

Zhang et al. [70] proposed a non-shift edge based ratio (NSER) method. The authors utilized the variation
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of the number of edge points in non-shift edge map to measure the quality. Capodiferro et al. [71] proposed

a method by integrating a structure loss measure and a categorical indicator of impairment types. Fisher

information theory is used to calculate the positional structural information to estimate the quality, and

the distortion categorical index is estimated by the mutual correlation of gradients of two images. Di

Claudio et al. [72] utilized the combination of two separate metrics to measure the perceptual impact of

detail losses and of spurious details. Ding et al. [73] measured the dominant structural information change

using anisotropy and local directionality. Sun et al. [74] evaluated image quality based on superpixel

luminance similarity, superpixel chrominance similarity, and pixel gradient similarity.

(4) Learning-based feature extraction and integration. Instead of directly combining quality

related image features, some IQA metrics are based on learning techniques for feature discovery and

integration. An obvious advantage of using machine learning technique in feature integration is that the

model can be mathematically optimal and therefore has superior performance.

Narwaria et al. [75] used singular value decomposition (SVD) based features, and the support vector

regression (SVR) was used as a feature fusion tool. Another SVD-based measure was proposed in [76],

and the authors first calculated the distance between the singular values of the reference image blocks and

distorted image blocks, then they computed a global value from each block to represent the final quality.

Liu et al. [77] introduced a novel parallel boosting measure which inherited the advantages of some

state-of-the-art FR measures. Specifically, the authors utilized the SVR to integrate the quality features

extracted by state-of-the-art FR measures. Wang et al. [78] utilized the parts-based representation of non-

negative matrix factorization (NMF) to estimate image distortions, then the extreme learning machine

(ELM) was used to generate the final quality score. Peng et al. [79] introduced a two-stage framework

based on support-vector classification and k-nearest-neighbor regression. Specifically, the authors devised

a probabilistic approach to make use of distortion-specific features, and the authors conducted a decision

fusion to integrate the SSIM, visual signal-to-noise ratio (VSNR) and visual information fidelity (VIF)

measures by k-nearest-neighbor regression.

Sparse representation is another widely used learning related method for feature selection. Chang et

al. [80] proposed a sparse feature fidelity (SFF) measure, with sparse representation and independent

component analysis (ICA) based feature selection followed by similarity measurement. Li et al. [81]

proposed an image quality index with adaptive sub-dictionaries (QASD) based on sparse representation.

The authors trained an over-complete dictionary from natural images and adaptively selected the sub-

dictionaries to extract sparse features. The similarity of two images’ sparse features and some other

auxiliary features is computed as the quality index. Yuan et al. [82] utilized sparse representation in local

image patches, and the difference between the sparse representation of reference and distorted patches was

computed as the quality map. The kernel ridge regression (KRR) was used to fuse the local quality into

the final quality score. Ahar et al. [83] first deployed a Fourier basis for sparse coding, then ranked the

amplitudes of the sparse coefficients, and finally assessed the correspondence between ranked coefficients

of the reference and the distorted images.

Besides those basic learning techniques, some methods utilize more complicated deep learning to predict

the quality, considering the successes of deep learning in various visual problems [84–89]. Gao et al. [90]

proposed a deep similarity index (DeepSim) with deep neural network (DNN). The authors estimated

the local similarities of DNN features between two images, and pooled the local similarities to the final

quality. Wang et al. [91] first utilized a local linear model (LLM) to detect the degradation between

reference and distorted images, and then introduced a distortion-specific compensation strategy to deal

with the offset caused by different image distortion types. In their method, convolution neural network

(CNN) was used to compute the score offset. Kim et al. [92] proposed a CNN based FR IQA model, in

which the optimal visual weights were learned based on the understanding of database information itself.

Bosse et al. [93] introduced a neural network-based approach to FR and NR IQA which allows for feature

learning and regression in an end-to-end manner. It learned the local quality and local weights jointly,

and it can be used for FR or NR IQA with slight adaptations.
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3.1.2 Transform domain methods

Some methods perform transformation to extract features, because the quality degradation can be also

reflected in the transformation domain.

(1) Wavelet domain. Sheikh et al. [94] explored IQA from the perspective of information processing

of the HVS. Specifically, they adopted two different natural scene statistics (NSS) models to describe the

reference and distorted images. The reference image is expressed by Gaussian scale mixture (GSM) in

the wavelet domain, while the distorted image is expressed by a simple signal attenuation and additive

Gaussian noise model in the wavelet domain. The final information fidelity criterion (IFC) is derived

from the mutual information between the source and distorted images. Sheikh et al. [95] later extended

their study and investigated the relationship between image information and perceptual quality. They

formulated the quality perception process with a distortion channel followed by a HVS channel and

proposed a VIF measure which quantifies the information error between reference and distorted images.

VIF is derived from the quantification of two types of mutual information: the mutual information

between the input and the output of the HVS channel (described via a stationary white Gaussian noise

model) when no distortion channel is presented (i.e., reference mutual information), and the mutual

information between the input of the distortion channel and the output of the HVS channel for the test

image. The NSS models used to describe the reference and distorted images are similar to IFC [94].

Demirtas et al. [96] developed a multi-scale quality estimator for images with different spatial resolu-

tions to tackle the problem that images can be viewed at different distances on different devices. Image

luminance is first decomposed into subbands by wavelet transformation, then the wavelet subbands are

described via Gaussian scale mixture, and mutual information between reference and distorted images’

subbands is estimated as the quality.

Chandler et al. [19] proposed a VSNR measure. Wavelet transform is used to determine detectability of

the degradation. Low-level property of perceived contrast and the mid-level property of global precedence

are considered for supra-threshold distortions. VSNR is computed via a simple sum of the Euclidean

distances in distortion-contrast space of wavelet coefficients.

Li et al. [97] classified the differences between the reference and distorted images as detail loss and

additive impairment, which refer to the loss of useful visual information and the redundant visual infor-

mation, respectively. The authors adopted a wavelet-domain decoupling algorithm to separate the detail

loss and additive impairment features before pooling.

Tang et al. [98] proposed an algorithm based on α-stable model similarity in wavelet domain. The au-

thors found that the leptokurtic and heavy-tailed behaviors of image wavelet coefficients are characterized

by symmetric α-stable density, and the model parameters are highly correlated to the distortions. Thus

they normalized the characteristic function of symmetric α-stable model to derive the final similarity

measurement.

(2) DCT domain. Bae and Kim [99] proposed a DCT based quality degradation metric (DCT-QM),

which was derived from a psychophysics theory for low-level mechanism of neural receptive responses in

visual cortex. It was computed as a weighted mean ℓ2 norm in the DCT domain, which was easy to

implement and had some desirable mathematical properties, including differentiability, convexity, and

valid distance metrics. In a related study [100], Bae and Kim proposed a structural contrast-quality

index (SC-QI) based on a structural contrast index which can describe the local and global visual quality

perception of the image with various distortion types. The feature values of the structural contrast index

are calculated from the DCT coefficients of the image luminance. The authors compared the similarity

of contrast energy values in low frequency, middle frequency and high frequency regions in 4 × 4 DCT

blocks. They also modified SC-QI to a structural contrast distortion metric (SC-DM) to retain some

favorable mathematical properties.

3.2 Reduced-reference IQA algorithms

The objective of RR IQA measures is to predict the quality of image with limited access to the reference

image. Generally RR features of the reference are extracted at the sender side and transmitted to the
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Figure 5 General framework of RR IQA algorithms. RR features of the reference and distorted images are extracted at

the sender and receiver side, respectively. Then the RR features of the reference and distorted images are used collectively

to compute the quality.

receiver side. The same feature extraction process is performed for the distorted image at the receiver

side, and the RR features of the reference and distorted images are used collectively to compute the

quality of the distorted image, as illustrated in Figure 5. A good RR approach should be able to obtain

high quality prediction accuracy with the limited amount of RR features. We also classify RR metrics

into spatial domain based and transfer domain based methods.

3.2.1 Spatial domain methods

Redi et al. [101] extracted color correlogram features which described spatial correlations of colors. The

color distribution features are mapped into a numerical expression which describes the perceived quality.

Wu et al. [102] decomposed images into orderly and disorderly portions. Then the quantities of visual

information of the two portions are computed. Finally, information fidelities on the two portions are

evaluated and combined into the overall quality score. Decherchi et al. [103] introduced an augmented

version of the basic extreme learning machine (ELM), the circular-ELM (C-ELM). The second order

statistics of color information is employed as features to describe the image. The final prediction of

the quality score is conducted by the trained C-ELM. Bampis et al. [104] used Gaussian scale mixture

models to describe images which have been locally mean subtracted. The locally weighted entropies of

distorted images and reference images are calculated. The differences between entropys are averaged over

blocks, thereby yielding the image quality score. Zhang et al. [105] proposed an RR IQA method using

local sharpness because multi-scale local sharpness maps are affected differently by different distortion

types. Min et al. [106] introduced a saliency-induced RR IQA method because different types and levels

of degradation can strongly influence saliency detection. Liu et al. [107] proposed an RR IQA method

based on free-energy principle and sparse representation.

3.2.2 Transform domain methods

Gao et al. [108] used the wavelet-based contourlet transform to process the images. Normalization is

conducted in the transform domain considering the contrast sensitivity function, then the difference of

proportions of visual sensitivity coefficients in distorted and reference images is calculated as the quality

score. Wang et al. [109] utilized generalized Gaussian density (GGD) function to fit the marginal distri-

bution of coefficients computed from the wavelet subbands derived by steerable pyramid decomposition,

and model parameters are used as features to predict the quality score. Soundararajan et al. [110] found

that the wavelet coefficients of reference and distorted images followed the Gaussian scale mixture (GSM)

distribution. Parameters of GSM are estimated to measure the differences of entropys between distorted

and reference images. Rehman et al. [111] extracted statistical features from images after the multiscale

multiorientation divisive normalization transformed and measured the quality as the distance between
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subband coefficient probability distributions of the original and distorted images.

Ma et al. [112] used GGD to fit the coefficient distributions of the reorganized DCT subbands. The

symmetric city-block distance was employed to measure the image quality. Golestaneh et al. [113] used

the adjusted contrast sensitivity function to filter the input image, then the gradient magnitudes were

extracted and normalized with entropy of DWT coefficients of the gradient map to calculate the quality. Li

et al. [114] used GSM to fit the histogram of image coefficients in the wavelet transform domain. Statistical

features extracted from transform domain of reference and distorted images are used to evaluate the

quality. Gao et al. [115] used multiscale geometry models to decompose images into different frequency

bands. The contrast sensitivity function and just noticeable difference filters are used to mimic the

nonlinearities and noticeable variation of human visual system. The histograms of coefficients in different

bands are compared to obtain the quality. Zhu et al. [116] utilized a two-level discrete Haar wavelet

transform to decompose the input reference and distorted images, and then used sparse representation

to extract free-energy-based features from the subband images.

3.3 No-reference IQA algorithms

NR IQA metric aims to predict the quality of image without any information about the original reference

image. NR IQA is considered as more challenging than FR and RR IQA because less prior knowledge

is used, as illustrated in Figure 6. This also makes NR IQA methods more attractive for practical

applications.

On the other hand, although the original image content is not available, assumption of the distortion

types can often be made for NR IQA as the application scenario is presumably known for most cases.

Therefore, NR IQA methods can be categorized according to distortion types, namely distortion-specific

and general-purpose algorithms. Distortion-specific measures generally analyze the artifacts introduced

by a specific distortion process and extract relevant features, whereas general-purpose measures can only

utilize the general quality features which are supposed to able to describe all types of distortions.

3.3.1 Distortion-specific NR IQA methods

If the distortion process is known beforehand, distortion-specific NR IQA measures are favored because

of higher accuracy and robustness. The widely studied types of distortions include JPEG compression,

blur/noise, and JPEG2000 compression.

(1) JPEG compression. JPEG compression is ubiquitously used in visual communication systems.

JPEG compression causes blocking and blurring artifacts at low bitrate, owing to the independent pro-

cessing of individual blocks. NR IQA measure for JPEG images is one of the most throughly studied

area, because of its practical value in quantifying and optimizing existing visual communication systems.

Blockiness, as the most prominent JPEG related artifact, is clearly defined and easy to model, and this

also facilitates popularity of the study.

The inter-block discontinuity is a representative feature of blocking effect, so many algorithms gauge

the JPEG image quality through measuring the difference around block boundaries. Wang et al. [117]

modelled the blocky image as a non-blocky image interfered with a pure blocky signal, and the blocking

effect is then measured by detecting and estimating the power of the blocky signal. Lee and Park [118]

measured the strength of blocking artifacts based on the observation that the pixel values changed
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abruptly across the boundary, while the pixel values remained unchanged along the entire boundary.

Liu and Heynderickx [119, 120] combined the pixel-based distortions, i.e., the blocking artifact, with

its local visibility described via a visual masking model. A block grid detector is used to locate the

block boundary to reduce the computation complexity. Instead of using pixel discontinuity at the block

boundaries, Pan et al. [121] used the edge orientation of the pixels at the block boundaries to measure

blockiness. Li et al. [122] evaluated blockiness by measuring the regularities of pseudo structures. The

authors also considered the ratio of color-missing blocks because heavier JPEG compression resulted in

more color-missing blocks. Li et al. [123] extracted block grids from the image, and then measured the

blocking artifacts by quantifying the grid strength and regularity. Min et al. [124] introduced the concept

of the most distorted image (MDI), which was derived from the distorted image and suffered from the

highest degree of compression. They proposed the pseudo structural similarity (PSS) method for JPEG

compressed images by measuring the similarity between pseudo structures of the distorted image and the

corresponding MDI.

Besides the inter-block blocking artifacts, intra-block blurring artifacts are also introduced owing to the

discard of high frequency DCT coefficients. Some researchers incorporated the intra-block blurring effect

into consideration for better precision. Wang et al. [125] predicted JPEG image quality by estimating

blockiness described by the average differences across block boundaries, and blurring described by the

average absolute difference between in-block image samples and the zero-crossing rate of the difference

signal. Perra et al. [126] processed the image with Sobel operator, and measured JPEG image quality

by quantifying luminance variation of both the block boundary pixels and the remaining pixels. Zhan

and Zhang [127] considered both blockiness along block boundaries and the luminance change within

blocks. Gastaldo et al. [128] extracted features derived from the first-order histogram and co-occurrence

matrix on a block-by-block basis, and then a circular back-propagation (CBP) neural network [129] was

employed for quality regression.

JPEG image quality can also be evaluated from transform domains. Bovik and Liu [130] proposed a

measure in the DCT-domain. The blocking artifact is modeled as a 2-D step function by constructing

a new block from two adjacent blocks. The block construction and parameter extraction are conducted

in the DCT-domain. Chen and Bloom [131] first calculated the absolute difference between adjacent

pixels along each column and row. Then a one-dimensional discrete Fourier transform is employed on the

difference signal to derive the blockiness measure. Golestaneh and Chandler [132] counted the number of

zero-valued DCT coefficients in each block, and the counts are weighted by a quality relevance map, which

indicates whether the blocks are natural or generated by JPEG compression. Li et al. [133] employed

Tchebichef moments to measure blocking artifacts based on the observation that Tchebichef kernels with

different orders are able to capture blockiness. Quantization noise was estimated in [134]. The authors

assumed that the probability density function (PDF) of DCT coefficients follows Laplacian distribution,

and the PSNR of a given image is predicted by estimating the key parameter of the distribution. Wang et

al. [135] extended SSIM to an NR case for DCT-based compressed images through probabilistic models

of the quantization noise on spatial and DCT domains.

(2) Blur/noise. Blur and noise are another two common types of distortions widely encountered in

practical visual communication systems. Blur can be caused by optical abbreviation, motion, as well as

quantization, while noise is almost pervasive in nearly all steps of a visual communication system. We

combine the review of NR IQA metrics for blur and noise together because they are actually two opposite

types of distortions, i.e., with the loss of useful high frequency contents and the excess of disturbing high

frequency contents.

Quality assessment of blur images is a widely studied area and many NR IQA measures have been

proposed. Noise is less researched from the perspective of IQA, however, noise estimation for images is

an important topic in image processing [136–140] as the noise strength (e.g., σ of a Gaussian model) is

a indispensable prior for almost all denoising algorithms. It is noticed that additive noise, as a type of

distortion, has little correlation with the image content and therefore its negative impact over perceptual

quality is largely proportional with the noise strength [141]. As a consequence, noise estimation result

serves as a good quality index for noisy images [142]. Meanwhile, since noise is an opposite type of
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degradation against blur, many blur measures are found to be effective for noisy images. So in this part

we focus on NR blur measures. Because image blurriness and sharpness are two sides of the same coin,

the terms of blur metric and sharpness metric are often used interchangeably in the literature.

Early intuitive type of blur measures are based on edge analysis. Marziliano et al. [143] proposed

a method by detecting the image edges and analyzing the spread of edges. Ong et al. [144] measured

the average extent of image edges. Specifically, the average extent of the slope’s spread of an edge

in the opposing gradients’ directions is measured. Ferzli and Karam [145] integrated the concept of

just noticeable blur (JNB) into a probability summation model. JNB indicates the minimum blurring

needed to be perceived near the edge given a contrast larger than the just noticeable difference (JND).

The authors used a probability summation model to accumulate all blur distortions exceeded the JNB.

Narvekar and Karam [146] developed a model based on the human blur perception under varying contrast

values. A probabilistic model is employed to estimate the probability of detecting blur at the image edges,

then a measure is derived by pooling the cumulative probability of blur detection (CPBD). Feichtenhofer

et al. [147] introduced a sharpness measure based on the statistical analysis of local edge gradients.

Some blur metrics also work in spatial domain, yet without explicit edge detection. Bahrami and

Kot [148] defined a maximum local variation (MLV) of each pixel as the maximum intensity variation of

the pixel with respect to its 8-neighbors. The MLV distribution is analyzed and derived to a sharpness

measure. Gu et al. [149] proposed a sharpness measure in autoregressive parameter space. The energy

and contrast differences of the estimated local autoregressive coefficients are computed and integrated

as the sharpness score. Li et al. [150] proposed a sparse-based sharpness measure. A block-wise sparse

representation is first derived, then the sharpness score is computed as the normalized energy computed

using the sparse coefficients of a set of high-variance blocks.

Many frequency domain methods are also proposed, since as mentioned, blurring is related to loss of

useful high-frequency information. The authors [151] analyzed the histogram of non-zero DCT coefficients,

based on the observation that sharp images have high values of alternating current (AC) coefficients.

Shaked and Tastl [152] employed localized frequency content analysis in a feature-based context. Vu

and Chandler [153] first decomposed the image with a three-level discrete wavelet transform (DWT),

and then a weighted average of the log-energies of the DWT subbands was computed as the sharpness.

Hassen et al. [154] proposed a local phase coherence (LPC) based sharpness measure in the complex

wavelet domain based on the observation that blur introduced degradation of LPC strength near sharp

image features. Oh et al. [155] introduced a measure for camera-shaken blur based on spectral statistics,

including image spectrum variations across orientations, and some properties of spectral contours of

camera shaken images.

There also exist some spatial- and transform-domain hybrid methods. Caviedes and Oberti [156]

proposed a measure based on averaged edge profile kurtosis. They detected edges and created an edge

profile by assigning them to 8 × 8 blocks. Then the average 2D kurtosis of the 8 × 8 DCT blocks is

computed. Ciancio et al. [157] fused different sharpness measures and some simple image features into a

classifier based on a neural network. A spectral and spatial sharpness (S3) method is proposed in [158].

S3 combines a spectral estimator which measures the slope of local magnitude spectrum, with a spatial

estimator which measures the total spatial variations. Li et al. [159] extracted multi-scale spatial and

spectral features, which are fused through SVR. The spatial features are based on gradient and singular

value decomposition, while the spectral features are DCT-domain entropys.

(3) JPEG2000 compression. JPEG2000, as an image format, might not be as successful as expected.

However, because JPEG2000 compression is widely included in many IQA databases, and a number of

objective quality metrics have been proposed.

Major distortions from JPEG2000 compression include blurring of image details and ringing artifacts

around edges. Although many image blur metrics are applicable to JPEG2000 with fairly good results,

some researches focused on quantify the ringing artifacts. Marziliano et al. [160] proposed an FR and

NR blur metric as well as an FR ringing metric, which are based on the analysis of image edges and

adjacent regions. Based on the assumption that natural scenes contain nonlinear dependencies which can

be disturbed by the compression process, Sheikh et al. [161] proposed a NSS-based measure by quantifying
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this disturbance. Sazzad et al. [162, 163] presented a method by fusing pixel distortions estimated from

neighboring pixels, and edge information described by zero-crossing rate and histogram features with and

without edge preserving filter. Zhang and Le [164] proposed a method based on local pixel activities. Liu

et al. [165] first detected the ringing region, then estimated the visibility of ringing artifacts by comparing

it with the local background. Liang et al. [166] introduced a ringing metric based on the ringing visibilities

of the regions associated with the gradient profiles. Zhang et al. [167] presented a measure based on 1-D

and 2-D kurtosis in the DCT domain of the image blocks.

3.3.2 General-purpose NR IQA methods

(1) NSS-based methods NSS is a powerful tool for general purpose NR IQA. The motivation is that

high quality natural scene images obey some kind of statistical properties, while quality degradations can

be deviated from these statistics. A typical NSS-based NR IQA measure consists of 3 key steps: feature

extraction, NSS modeling, and feature regression. The features can be extracted from spatial or transform

domains. Parametric models such as GGD, multivariate GGD, and asymmetric GGD (AGGD) are used

in the NSS modeling step. Finally parameters of the NSS models are regressed to get final quality using

support vector machine (SVM) and support vector regression (SVR).

Moorthy and Bovik [168] proposed the blind image quality index (BIQI) through a 2-stage framework

involving distortion identification followed by distortion-specific quality assessment. Wavelet transform

over three scales and three orientations is conducted, and the subband coefficients are parametrized using

a GGD given by

f(x|α, β, γ) = αe−(β|x−µ|)γ , (5)

where µ and γ are the mean and shape parameters, α and β are the normalizing and scale parameters.

The scene statistics are described through the fitting parameters, which are used as quality features. SVM

and SVR are utilized for distortion identification and quality regression. BIQI is further improved to the

distortion identification-based image verity and integrity evaluation (DIIVINE) index [169]. The same

two-stage framework is utilized, but the quality feature set is enriched to describe the scene statistics more

comprehensively by considering the correlations across subbands, scales, and orientations. A learning

based blind image quality measure (LBIQ) is developed in [170]. LBIQ extracts features from statistics

of complex pyramid wavelet coefficients, texture features described by the cross-scale distribution of

coefficient phase, and blur/noise estimation. Principal component analysis (PCA) is performed to reduce

the feature dimension and SVM is used to combine these features.

Gao et al. [171] utilized multiple statistical properties in the wavelet domain, including the non-

Gaussianity of the wavelet coefficients distribution, the local dependency between the adjacent coefficients,

and the exponential decay characteristic of the image energy as the wavelet scale becomes finer, finally

multiple kernel learning is used to predict the quality. Zhang et al. [172] presented a complex extension

of the DIIVINE (C-DIIVINE), which applies a complex steerable pyramid decomposition to the distorted

image, and the corresponding complex-valued subband coefficients are statistically measured as quality

features. Wang et al. [173] explored the natural color statistics. Mean subtracted contrast normalized

(MSCN) and GGD fitting described above are performed to the color channels of different color spaces.

The same quality regression after distortion identification framework as DIIVINE is utilized.

Modeling NSS in the DCT domain enjoys the advantage of lower computational burdens. Saad et

al. [174] proposed the BLIINDS index (blind image integrity notator using DCT statistics) using the

statistics of local discrete cosine transform coefficients. DCT-based contrast and structure features are

extracted as the quality features. Finally the mapping from quality features to quality score is learned

through probabilistic prediction models. Saad et al. [175] later introduced the BLIINDS-II index, whose

framework is illustrated in Figure 7 [175]. BLIINDS-II applies the GGD described in (5) to model

the statistics of the DCT coefficients. The fitted generalized Gaussian model parameters are then used

to compute the quality relevant features. Finally, a probabilistic predictive model described by the

multivariate GGD

f(x|α, β, γ) = αe−(β(x−µ)TΣ−1(x−µ))γ (6)



Zhai G T, et al. Sci China Inf Sci November 2020 Vol. 63 211301:18

Image
Local DCT

computation

Quality

score

DCT

coefficient 

GGD modeling 

Model-based

feature

extraction

Probabilistic model: 

prediction of quality scores

Lowpass

filtering

Down-

sampling

Multiscale image generation

Block DCT 

coefficient

Model

parameters

Figure 7 Framework of the NR BLIINDS-II index [175], which is based on the NSS in the DCT domain.

is used to predict the quality score, where Σ is the covariance matrix of the multivariate random variable

x, and the rest parameters are defined the same as the univariate case.

Spatial domain NSS is also studied for even higher computational efficiency. Mittal et al. [176] proposed

the blind/referenceless image spatial quality evaluator (BRISQUE) using the NSS in the spatial domain.

BRISQUE models the statistics of the MSCN coefficients

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + 1
, (7)

where i, j are spatial indices, I(i, j) is the given intensity image, µ(i, j) and σ(i, j) are the local mean

and variance computed in a local window, respectively. The same GGD described in (5) is used to model

the statistics of the MSCN coefficients. Besides that, the products of neighboring MSCN coefficients are

modeled through a AGGD:

f(x; γ, βl, βr) =







γ

(βl+βr)Γ(
1

γ
)
exp(−(−x

βl
)γ), x < 0,

γ

(βl+βr)Γ(
1

γ
)
exp(−(−x

βr
)γ), x > 0.

(8)

The fitting parameters of the GGD and AGGD are extracted as quality features, and regressed through

SVR. Based on BRISQUE, Mittal et al. [177] proposed a “completely blind” natural image quality

evaluator (NIQE), which uses no human opinion scores for training. The NSS quality features are the same

as the BRISQUE, but only image patches with high image contrast are used. Moreover, a multivariate

Gaussian model (MVG) which can be described by (6) is used to fit all NSS features. Finally, the distance

between the MVGs of high quality images and the target distorted image is computed as the quality.

Zhang et al. [178] developed a feature-enriched version of NIQE named integrated local NIQE (IL-

NIQE). Besides the statistics of the MSCN coefficients, IL-NIQE also considers the statistics of gradients,

log-Gabor filter responses, and colors. Similarly, MVG is applied to model the statistics of all features,

and the distance between the MVGs is computed as the quality. Xue et al. [179] utilized the gradient mag-

nitude (GM) and Laplacian of Gaussian (LOG) features. A joint adaptive normalization is conducted to

normalize the GM and LOG features. An index called independency distribution is proposed to measure

the joint statistics of them. The marginal distributions and the independency distributions of GM and

LOG act as the final quality features, which are integrated through SVR. Lee and Plataniotis [180] pro-

posed the invariance descriptor-based algorithm (IDEAL), which models the statistics of both luminance

and color. The luminance statistics are modeled the same way as BRISQUE. The authors also proposed

several parametric NSS models to describe the statistical properties of hue, saturation, opponent angle,

and spherical angle. The statistics of the luminance and color are used to estimate the quality through

SVR. L-moments based statistics are introduced to improve the BRISQUE features in [181]. L-moments

make BRISQUE more robust and less sensitive to small variations of NSS. Wu et al. [182] proposed

the local pattern statistics index (LPSI), which extracts statistical features described by local binary

patterns.

Transform domains other than wavelet are also used. Zhang et al. [183] introduced a measure using the

joint statistics of generalized local binary pattern (GLBP). GLBP decomposes the image into multi-scale

subband images using the Laplacian of Gaussian (LOG) filters, then joint GLBP histograms extracted
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Figure 8 Framework of the NR CORNIA method [189], which is based on unsupervised feature learning.

from the subband images are used as quality features. Lu et al. [184] presented a NSS-based method in

contourlet domain. They used a joint distribution to describe the relationship of contourlet coefficients.

The statistics of contourlet coefficients are employed as quality features, which are finally combined

nonlinearly to the quality score.

Some hybrid methods considering multiple domains are also proposed for better performance. A

hybrid no-reference (HNR) model based on a hybrid of curvelet, wavelet, and cosine transforms was

proposed in [185]. Natural scene statistics of the log-pdf of the transformed coefficients are modeled to

predict the quality. Zhang and Chandler [186] developed a derivative statistics-based quality evaluator

(DESIQUE) which extracts NSS features in both the spatial and frequency domains. In spatial domain,

log-derivative statistics of single pixels and pixel pairs are modeled, whereas in frequency domain, log-

derivative statistics of the log-Gabor filter subband coefficients are modeled. The log-derivative statistics

are fitted through GGD, and the fitting parameters are used as the quality features to be regressed to a

quality score.

(2) Learning-based methods. With the resurgence of machine learning research, many learning

based NR IQA methods were proposed in the last few years. Some methods learn the quality aware fea-

tures from the images. Ye and Doermann [187,188] introduced visual codebook into the NR IQA problem.

They used Gabor filter based local features to construct a visual codebook which is learned from the train-

ing images and the correspond quality scores. Then the quality is described by the weighted average of

quality scores of codewords. Ye et al. [189] later proposed an unsupervised feature learning framework

for NR IQA, namely the CORNIA (codebook representation for no-reference image assessment) method

which constructs an unlabeled codebook from whitened raw image patches through K-means clustering.

The framework of CORNIA is illustrated in Figure 8. Then soft-assignment coding and feature pooling

are performed on a new image to extract the quality features, which are then fused through SVR. Ye et

al. [190] later developed a method based on supervised filter learning. They unified the feature extraction

and regression processes in a supervised back-projection framework. A quality-aware clustering (QAC)

method was introduced in [191]. QAC learns a set of centroids on different quality levels described by

FR-IQA measures. The learned centroids are then used as a codebook to infer the quality of image

patches. Qualities of all image patches are pooled to the final quality. Several FR measures are combined

to generate synthetic quality scores in [192]. The synthetic scores are then used as ground-truth quality

scores to replace human opinion scores in training NR-IQA methods to solve the problem of over fitting

owing to limited data.

Xu et al. [193] proposed a blind IQA method based on high order statistics aggregation (HOSA).

HOSA constructs a codebook in a similar way as CORNIA. Order statistics including mean, variance

and skewness are calculated to describe each cluster. Then the local features are assigned to nearest

clusters and the differences of between local features and nearest clusters are aggregated to the global

quality features. Zhang et al. [194] developed the semantic obviousness metric (SOM) for IQA. SOM

detects object-like regions, and then extracts semantic obviousness features on these regions. Local
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features are extracted from the object-like regions in an unsupervised way which is similar to CORNIA.

The semantic and local features are fused through SVM. Mittal et al. [195] applied a topic model on

quality-aware visual words described by BRISQUE features, and then examined the topic distributions

of the distorted image and pristine natural images to infer the quality. A supervised dictionary learning

framework was introduced in [196], where quality scores computed from FR-IQA metrics were used for

learning. Specifically, a quality-aware regularization term is added to traditional dictionary learning such

that a feature-aware dictionary and a quality-aware dictionary are jointly learned. In [197], local quantized

pattern (LQP) is used to extract image features, which are then clustered to construct a codebook. A

bag-of-words model is employed for final feature representation, and SVR is used for feature regression.

Jiang et al. [198] proposed a codebook based NR IQA method by optimizing multistage discriminative

dictionaries, which are learned by performing the label consistent K-SVD algorithm in a stage-by-stage

manner.

Sparse coding is also frequently used in NR IQA. He et al. [199] introduced a method based on the

sparse representation of natural scene statistics (SRNSS) feature. SRNSS extracts wavelet domain NSS

features, which are composed of magnitude, variance, and entropy of the subband wavelet coefficients.

Then the features are represented via sparse coding, and weighting ground-truth quality scores by the

sparse coding coefficients are computed as the final quality. A dictionary with human opinion scores and

hand-crafted features describing two dimensional spatial correlations of images is learned using sparse

representation in [200]. The quality is obtained by quantifying the sparse representation coefficients,

opinion scores and feature values.

K-nearest neighbor (KNN) is another frequently used approach in NR IQA. Wu et al. [201] proposed

a distortion classification and label transfer (TCLT) method, following the two-stage framework used in

DIIVINE [169]. The quality features are extracted from multiple domains (DCT, wavelet, and spatial)

and multiple color channels (Y, Cb, and Cr). The image’s k-nearest-neighbors are searched, and a label

transfer method is used to predict the quality. Wu et al. [202] extracted structural features from both

spatial-frequency and spatial domains, and a piecewise regression method is employed to train a specific

prediction model for each test image using the test image’s k-nearest neighbors. A local consistency-aware

retriever and an uncertainty-aware evaluator (LOCRUE) is proposed in [203]. LOCRUE searches for

similar neighbors of a test image as training set. During searching, the local consistency of the training

data is considered to have smoother sample space. The image quality is finally estimated through a

sparse Gaussian process. Fang et al. [204] proposed a method to quantify the blurriness, noisiness, and

blockiness (BNB) of a image, based on the observation that the adjacent pixels difference follows a

generalized Laplace distribution. Three distortion-specific BNB metrics are proposed, and fused using

the k-nearest neighbor algorithm.

Rank learning is also a popular tool. Gao et al. [205] utilized learning to rank in NR-IQA. Prefer-

ence image pairs (PIPs) are generated, and the preference label representing the relative quality of two

images is learned using a multiple kernel learning algorithm. A test image is paired with all training

images, and the corresponding preference labels are used for quality prediction. A dipIQ method was

proposed in [206]. Quality-discriminable image pairs (DIPs) and the corresponding perceptual uncer-

tainty levels are generated. dipIQ employs a neural network based pairwise learning-to-rank algorithm

named RankNet [207] to learn the IQA model by incorporating the uncertainty into the loss function.

A multi-task rank learning based IQA (MRLIQ) method was developed in [208]. Multiple rank learning

based IQA models which are responsible for different distortion types are trained together. The qualities

from multiple models are fused using the probabilities of the distortion type to the final quality.

Given the successes of deep neural networks (DNNs) on wide swathes of visual problems [209–214], it

is natural to utilize neural network in NR IQA to integrate the extracted quality features or to act as

both the feature extractor and regressor. Simple neural network with stacked autoencoders is used in

some early studies. A neural network with stacked autoencoders is employed in [215]. The distributions

of normalized Y, I and Q channels are used as quality features. The network was pre-trained with greedy

layer-wise training, and then fine-tuned through back propagation. A shearlet and stacked autoencoders

based no-reference image quality assessment (SESANIA) method was proposed in [216]. SESANIA first
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performed a shearlet transform, and the sums of subband coefficient amplitudes were calculated as quality

features. Stacked autoencoders with a softmax classifier was utilized to mapping features to quality labels.

Normalized multi-scale difference of Gaussian (DoG) responses were used as features in [217]. Stacked

autoencoders with three hidden layers and a SVM regression were employed for quality regression and

pooling.

General regression neural network (GRNN) and deep belief network (DBN) are also useful tool for

feature integration. Li et al. [218] utilized a GRNN [219] to fuse the quality features including the mean

of phase congruency, the entropy of phase congruency, the entropy and gradient of the distorted image.

Tang et al. [220] learned a nonlinear kernel regression function using a rectifier neural network. The

utilized neural network was a three-layer DBN [221] pre-trained with unlabeled data and fine-tuned with

labeled data. A similar DBN was pre-trained and fine-tuned in [222], but the quality regression step was

replaced by a classification framework. The final numerical measurement of image quality was computed

as the mean of the quality distribution.

Many NR IQA algorithms benefit from the fast development of CNN. Kang et al. [223] integrated

feature learning and regression into a general CNN framework, which consists of one convolutional layer

with max and min pooling, two fully connected layers and an output node. The CNN takes normalized

image patches as input and outputs the quality score directly. A deeper CNN was used in [93, 224]. A

weighted average patch aggregation method was proposed, and the loss was the sum of both the patch-

wise loss and the weighted image-wise loss. A compact multi-task CNN was utilized in [225] to estimate

image quality and identify distortion type simultaneously in a no-reference setting. Kim and Lee [226]

proposed a blind image evaluator based on a convolutional neural network (BIECON). For normalized

image patches, CNN model is trained using local patch qualities computed by FR-IQA measures. Then a

pooling layer is added to regress the features extracted from CNN, and the whole network is optimized in

an end-to-end manner. Gu et al. [227] proposed a vector regression framework for NR IQA by combining

belief score estimation and object oriented pooling. First a vector of belief scores is estimated via CNN,

then an object oriented pooling is utilized to boost the performance.

Kim et al. [228] utilized a CNN to predict the objective error map, and then predict subjective score.

Using the objective error map as an intermediate objective can avoid overfitting problem. Pan et al. [229]

designed a deep NR IQA model based on a framework which consisted of a fully CNN and a pooling

network. The network was trained using the quality map derived from FR IQA measure. Ma et al. [230]

proposed a multi-task end-to-end optimized deep neural network (MEON) for NR IQA. The method

consisted of two sub-networks: a distortion identification network and a quality prediction network sharing

the early layers. Lin et al. [231] introduced adversarial learning into NR IQA. Liu et al. [232] trained a

Siamese network to rank images, and then fine-tuned the network for quality prediction. Talebi et al. [233]

trained a CNN on both aesthetic and pixel-level quality datasets, and predicted both mean quality scores

and standard deviations. Guan et al. [234] incorporated distortion information, visual importance, and

quality perception via a deep neural network. Kim et al. [92] gave an overall introduction on CNN-based

IQA.

(3) HVS model based methods. Working mechanism of the HVS, although of which we still have

limited knowledge, is generally an important source to design useful features for IQA. Zhai et al. [235]

proposed a psychovisual quality metric in free-energy principle. The free-energy principle interprets the

perception of an image as an active inference process, in which the brain tries to explain the scene

using an internal generative model. The psychovisual quality is closely related to how accurately visual

data can be explained by the generative model, which can be quantified using the free energy. A general

framework of free energy modeling is illustrated in Figure 9. The readers can refer to [236] for an overview

of the free-energy inspired visual quality assessment. A reduced-reference free-energy-based distortion

metric (FEDM) and a no-reference free-energy-based quality metric (NFEQM) are developed within the

framework in [235]. Gu et al. [237] modified the free-energy-based measure, and proposed an NR free

energy-based robust metric (NFERM). NFERM incorporates three groups of features, including the free

energy-based feature, some HVS-inspired features such as structural information and gradient magnitude,

and spatial NSS features. The three groups of features are regressed using SVR for a final quality
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Figure 9 A general framework of free energy modeling [189].

score.

Li et al. [238] proposed an NR-IQA method using structural and luminance features (NRSL) motivated

by human visual perception of images. Perceptual structural features described by local binary pattern

distribution, and normalized luminance magnitudes distribution are extracted and fused using SVR.

Inspired from the HVS’s sensitivity to image structural information, Li et al. [239] extracted perceptual

features from image first-order and second-order structural patterns, which were described through the

distributions of gradient magnitude, and LBPs of the normalized luminance, respectively. Contrary to

the conventional IQA metrics, Min et al. [240, 241] utilized a new “reference” called pseudo-reference

image (PRI) and introduced a PRI-based blind IQA (BIQA) framework. Different from the traditional

reference image, which is assumed to have a perfect quality, PRI is generated from the distorted image

and is assumed to suffer from the severest distortion for a given application. Several distortion-specific

metrics, one opinion-unaware NR IQA measure, and one opinion-aware NR IQA measure are proposed

based on this framework. Wu et al. [242] introduced a pairwise rank-order constraint into the maximum

margin regression framework, considering that minimizing average error does not necessarily lead to

correct quality rank-orders between the test images. LBP [240–242] was a key quality feature.

Based on the observation that natural images exhibit redundant information over various scales, Saha

et al. [243] used information loss over scales to quantify the distortions. Features extracted from image

scale-space, Wavelet domain and Fourier domain are used to formulate the quality score without training.

Liu et al. [244] extracted features from wide perceptual domains, such as brightness, contrast, color,

distortion, and texture. Then quality score prediction model is built for each feature, and an ensemble

method is utilized to combine all quality scores. Freitas et al. [245] utilized the statistics of an orthogonal

color plane pattern descriptor to characterize image quality.

4 Objective image quality assessment: emerging topics

This section reviews some emerging topics of IQA in recent years, including stereoscopic IQA, saliency-

guided IQA, screen content IQA, Tone-mapping and multiple exposure IQA, retargeting IQA, multi-

distortion IQA, authentic distortion IQA, dehazing IQA, virtual reality IQA, and various other emerging

topics. We classify those surveyed algorithms in topics/applications, rather than FR, RR and NR types

for clearer organization.

4.1 Stereoscopic image quality assessment

Stereoscopic or 3D IQA is popularized with the development of 3D movies and TV programs. The

research has both theoretical and practical values as most existing 3D contents and capture and display
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(a)

(b)

Figure 10 (Color online) An illustration of 3D distortions, including both left and right views. (a) Symmetrical;

(b) asymmetrical. Images are from the Waterloo 3D phase II database [24].

devices still have large room for improvement in terms of visual experience. An illustration of distorted

3D images is given in Figure 10.

4.1.1 Combination of monocular views and depth sense

Some researches had shown that the perceived quality of stereoscopic images can be separated into the

quality of monocular views and the quality of depth information:

O.M. = α ·QI + β ·D, (9)

where O.M. is the overall measure of stereoscopic image quality, QI is the quality index of monocular

views, and D is the term related to perceived depth. Some subjective experiments have been conducted

to verify the formulation [246, 247].

Based on the formulation in (9), many 3D IQA metrics have been proposed. Yun et al. [248] combined

existing 2D metrics with stereo sense score predicted with the measure of intensity, contrast and structure.

Benoit et al. [21] proposed a quality metric for the assessment of stereopairs using the fusion of 2D quality

metrics and the depth information. Yang et al. [27] and You et al. [249] followed very similar idea with

different choices of quality metrics for both parts in (9). Akhter et al. [250] proposed a metric using

segmented monocular image features. Hewage et al. [251] proposed a quality metric for depth map

using the extracted edge information. Maalouf et al. [252] considered the color information and contrast

sensitivity function (CSF) of human visual system. In [253], a deep neural network is trained to model

the process of monocular image quality prediction. Yang et al. [254] extracted 2D wavelet features from

monocular images as image content description and 3D features from a depth perception map as depth

perception description, which are then fused via deep belief network.

4.1.2 Binocular visual pathways

Two visual pathways exist in the binocular visual system [255]. The signals from the left and right

eyes will be transformed into uncorrelated or low-correlated signals as the input of visual pathways

(channels) [256]. Some stereoscopic image quality assessment algorithms simulate the separate channels

in HVS.

(1) Two-eyes pathways. The most direct and intuitive way of analyzing perceptual response is to

separate the signal for two eyes. The final quality measure can be obtained by applying 2D image quality
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assessment algorithms to both the left and right images, and combining these two quality scores into a

single number. Moorthy et al. [257] and Gorley et al. [258] noticed that the aggregated two-view quality

scores can deliver fairly good performance on symmetrically distorted stereo pairs without computation

of the disparity map. Yasakethu et al. [259] averaged the scores of the left and right views measured

by a number of 2D quality models with good overall performance. Meegan et al. [260] claimed that

the binocular sense of the quality of asymmetric MPEG-2 distorted stereo images is approximately the

average of the quality of the two views, and the quality of asymmetric blur distorted stereo images is

dominated by the better view. Fang et al. [261] utilized two CNNs to evaluate the qualities of the left and

right views, which are then fused via convolutional operations. Zhou et al. [262] introduced a dual-stream

interactive network containing left and right view sub-networks for NR stereoscopic IQA.

(2) Frequency bands. In [263], experimental results suggested that the disparity energy signals were

integrated across spatial frequency channels for generating a representation of stereoscopic depth in V4.

The physiological discoveries suggest that visual signals can be divided into multiple-frequency bands to

be evaluated separately:

V (Ik) = [V k
0 , . . . , V k

n−1, V
k
n ], (10)

where V k
i represents the ith frequency band in the vector V (I) of image Ik, and k can be the right or left

view. Lin et al. [264] designed a series of DOG filters of different scales and divided image into multiple-

frequency channels. Then the energy of different frequency bands were computed to weight-average

toward final results. Jiang et al. [265] considered the binocular interactions by dividing stereoscopic

images into frequency components using DOG filters and applying the gain control model to simulate the

cyclopean image. The final prediction function is derived from the support vector regression model.

(3) Summation and difference channels. The study in [266], suggested the existence of summation

and difference channels for stereopairs:

{

D = |L−R|,

S = L+R,
(11)

where S and D represent the binocular summation and difference of signals separately. Inspired by this,

Yang et al. [267] used the summation and difference channels to simulate the visual pathway in human

binocular visual system. The combination model using Gabor filter is employed to simulate visual system,

and 2D IQA metrics are employed to compare between two combined images. Lin et al. [268] proposed

an algorithm considering the influence of distorted disparity information on perceptual quality and the

binocular rivalry mechanism of HVS.

(4) Phase and amplitude maps. According to the phase congruency (PC) theory, obvious phase

information indicates the orientation where the congruency is maximum over scales [269]. It has been

proven in previous researches that simple cells in the primary visual cortex can be well modeled by using

Log-Gabor filters [270].

Using the phase congruency theory, Shao et al. [52] considered the JND property and disparity infor-

mation and further classified images into non-corresponding regions and binocular suppression regions.

The log-Gabor filter is employed to calculate phase congruency. Local amplitude and phase are calculated

by applying filters of different scales and orientations. Scores are predicted among different regions and

are fused into final quality index. Lin et al. [271] estimated the saliency-based visual importance map to

modify the amplitude. Besides, binocular visual properties and image low-level features are taken into

consideration. There are mainly three parts: the estimation of the saliency-based visual importance map,

the computation of cyclopean amplitude and phase maps, and the pooling process.

4.1.3 Cyclopean images

There have been some studies towards understanding binocular visual system and the simulation of

cyclopean image in the HVS when left-right images are presented to human eyes synchronously [272–274].

Cyclopean image, i.e., the image perceived by binocular stereoscopic vision system with a given image
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pair, is a popular model in recent research in stereoscopic image quality assessment. Many factors

including response of monocular channel, the perceived depth sense, and the interaction mechanism are

related to the formation of cyclopean image. One general way to synthesize cyclopean image is

fc(I
L, IR) =

(

EL + 1

EL + ER + 1

)

· IL +

(

ER + 1

EL + ER + 1

)

· IR

= gL · IL + gR · IR, (12)

where EL and ER are the energies of stimuli over all the frequency channels for the two views.

With the cyclopean image theory, Liu et al. [275] proposed a strategy to compute the stereoscopic

saliency map which was used to weight the cyclopean image. Then the original and distorted cyclopean

images are compared by different 2D IQA metrics, and several 2D IQA metrics are compared. Zhou et

al. [276] conducted region classification on stereoscopic images to divide two-view images into binocular

rivalry and monocular occlusion regions. Then similarities are calculated between original and distorted

cyclopean images among these regions, and are integrated into the overall quality score of stereoscopic

images by using perceptual modulation function and SVR. Chen et al. [22] developed a framework for

assessing the stereoscopic image quality. Monocular quality assessment metrics are employed to predict

the synthesized cyclopean image for reference images and distorted images. In another related study [23],

part of features were extracted from the formed cyclopean image. Li et al. [277] introduced an adaptive

cyclopean image by using ensemble learning.

4.1.4 Feature extraction

Features of natural scene statistics are demonstrated to be effective in quality assessment of monocular

images. As mentioned in Section 3, there are generally two phases in the quality prediction of 2D images,

namely feature extraction and feature integration. Similar strategy can be extended to stereo images

with consideration of binocular interactions.

The authors in [278] used GGD to fit the coefficients of luminance subband. Parameters of GGD are

estimated as quality features. The final quality is derived by comparing features of the reference and

distorted images. Ko et al. [279] proposed an FR stereoscopic IQA system covering a series of parallel

scorers. These scorers deal with various distortions and their scores are fused by SVR algorithm to get

the final quality measure. Wang et al. [280] proposed an RR 3D IQA method based on the NSS of

coefficients of the luminance and disparity maps in the contourlet domain.

Chen et al. [23] used SSIM-based algorithm to estimate the disparity map and uncertainty map and

formed the cyclopean image. Based on these maps, features of monocular statistics and stereoscopic

statistics are extracted and integrated through SVM. In [281], both spatial-domain and wavelet-domain

univariate NSS features, as well as the bivariate and correlation NSS features were extracted and inte-

grated via SVR. Ma et al. [282] found that coefficients of the left and right view images, as well as the

disparity map in the reorganized DCT domain had good statistical properties, thus GGD was used to

model the distribution of coefficients and the fitted parameters are chosen as quality features.

Zhou et al. [283] simulated the binocular visual perception using binocular energy response and binoc-

ular rivalry response. Local patterns of the binocular responses are used to form binocular features,

and KNN-learning was used to derive the final quality. In [284], the authors used the log Gabor filter

to simulate the responses of left and right V1 cells. Local magnitude, phase and energy patterns were

employed to map the image into a histogram for visual content representation. Dictionary and KNN-

based learning were used to predict the final quality. In [253] DOG, GM and LBP were used as the basic

features to represent textural and structural information of images, deep neural networks are used for

feature regression.

4.1.5 Sparse representation

As mentioned in Section 3, sparse coding can approximate receptive field of the HVS in response to natural

images [285]. It has been widely used in image representation [286] and turned out to be effective for 2D
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Figure 11 (Color online) An illustration of saliency weighted IQA. (a) Reference image; (b) distorted image; (c) saliency;

(d) saliency-weighted image; (e) SSIM; (f) saliency-weighted SSIM.

IQA [80–82, 199, 200]. For stereoscopic images, Shao et al. [287] simulated the disparity considering the

spatial frequency, orientations and phase shifts. Then phase-tuned quality lookup and visual codebook

are extracted and used to predict the quality. In [288], multi-scale dictionary learning is conducted.

Based on the learned dictionary, similarity of the sparse coefficients of the reference and distorted images

are calculated and fused to the final quality. Qi et al. [289] represented images via visual primitives, the

intra and inter entropys of two views are calculated based on the probability to simulate monocular and

binocular cues. Shao et al. [290,291] extracted DOG, HOG and LBP features to construct dictionaries, and

SVR was used to train the feature prior model to map features into the final quality. In [292], the authors

considered the characteristics of visual fields with the form of dictionary learning and quality lookups.

In [293], the authors constructed a database for dictionary learning with labels to indicate whether the

difference between two views is noticeable by human eyes. Shao et al. [294] learned modality-specific

dictionaries and the corresponding projection matrices from singly distorted images. The reconstruction

errors are used to estimate the final quality.

4.2 Saliency-guided IQA

Human visual attention is the behavioral and cognitive process of selectively concentrating on the special

region of the stimulus. Image quality and visual attention are two closely related research topics. Image

quality is highly related with artifacts located at salient regions, and human attention information can be

utilized as weighting map to emphasize salient regions to promote IQA metrics. An illustration of saliency

weighted IQA is given in Figure 11. Saliency-guided IQA methods can be classified into 2 categories:

subjective visual attention map based weighting and objective saliency map based weighting. It is also

noticed that image quality degradation can cause human attention variation especially detected saliency

change, thus there are some studies developing IQA metrics by measuring the saliency change.

4.2.1 Using saliency as weighting map

(1) Subjective visual attention map based weighting. Eye-tracking data-guided pooling strategy

has been explored in recent years to improve performance of IQA metrics. Larson et al. [295] conducted

eye-tracking experiments and investigate visual attention change under different image distortion types,

severities, and viewing strategies. Liu et al. [296] used eye-tracking data as the weighting information

in IQA metrics. They investigated the effectiveness of visual attention data collected under free-viewing

and quality-rating tasks, and it was observed that the free-viewing promotes IQA metrics better. Liu

et al. [297] also investigated the influence of image content on visual attention data’s promotion effect

to IQA metrics. They suggested that the images with small inter-observers’ attention variations were

highly able to profit from saliency pooling. Min et al. [58] collected eye-tracking data for 7 popular IQA

datasets, and applied the human fixation data into quality map pooling stage. Wang et al. [298] proposed

two novel pooling strategies to incorporate the saliency map into IQA metrics, and they suggested that

distortion types affected the performance gain of IQA metrics significantly, and proper pooling strategy

should be selected for the specific IQA metric. Rai et al. [299] conducted an eye-tracking experiment

in head-mounted display, and proposed a saliency-guided pooling strategy for developing virtual reality

IQA metrics. Zhang et al. [300] utilized the eye-tracking data of the distorted images to improve IQA

metric. They suggested that the eye-tracking data of both reference image and distorted image were able

to promote IQA metrics’ performance, and the later showed more encouraging result.
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(2) Objective saliency map based weighting. Considering that the eye-tracking devices are

generally expensive and are not widely accessible, objective saliency model is also used for large-scale

practical IQA tasks. Ma et al. [301] introduced a pooling strategy to apply saliency information into

MSSSIM and VIF. They divided the image into overlapped blocks, and calculated the local mean value

of each block as weighting coefficient. Zhang et al. [302, 303] used 20 saliency models to weight 12 IQA

metrics. Statistical results showed that saliency-guided weighting did promote IQA metrics, and the

performance gain was highly related to distortion types and saliency models. Wen et al. [304] proposed

an FR IQA metric with saliency weighting, and an objective saliency model using Fourier transform was

used for weighting. Xia et al. [305] proposed a saliency weighting method by mimicking human gaze

shifting paths via nonnegative matrix factorization. Specifically, they constructed a perceptual space

to integrate features, and the simulated gaze shifting paths are refined to train a probabilistic quality

evaluation model. Some images contain obvious salient object, while some others lack concentrated salient

region. Zhang et al. [306] proposed an efficient saliency dispersion measurement for classifying stimuli.

Based on this, they proposed an adaptive method to incorporate saliency into IQA metrics.

Mittal et al. [307] proposed an objective salient region detection algorithm for JPEG distorted images

by fusing low level features like contrast, luminance, and quality index. This saliency model is beneficial

for developing quality map pooling strategies. Winterlich et al. [308] proposed an NR blur metric for

automotive images. They calculated the saliency map using GBVS [309] and Itti&Koch [310] model to

weight the quality metric and achieved the better performance. Nasrinpour et al. [311] improved the

tone-mapped image quality index (TMQI) [42] by adding saliency-based pooling. The improved method

divided the image into small scale patches, and calculated the weighting factor for each patch by AIM [312]

saliency model. Similar to [311], Kundu et al. [313] improved the classical TMQI [42] via saliency-based

pooling based on Itti&Koch model [310].

4.2.2 Using saliency as quality feature

Instead of being used as a weighting map, visual saliency can be also used as a quality feature. This

is possible because various impacting factors can also influence visual attention and image saliency, for

example image compression [314], various image transformations and degradations [296,303,306,315,316],

sound [317–320], high-level facial information [321, 322], mental condition and mental healthy [323–325].

In [326], saliency information is used as a feature for NR IQA. It is found that the saliency-guided NSS

feature is an efficient descriptor for image quality assessment. Zhang et al. [327] proposed an FR IQA

metric named VSI by measuring saliency change. The saliency map which is calculated by the SDSP [328]

saliency model is first used as low level quality features, and then serves as a weighting map during the

final pooling. Zhang et al. [329] investigated the relationship between distortion-driven gaze pattern

variation and image quality degradation. This research suggested that the attention variation caused by

distortion is able to predict perceptual quality.

4.3 Screen content IQA

As being computer-generated, SCIs have some characteristics substantially different from NSIs. Therefore,

specific IQA measures are designed for SCIs in recent years. A comparison of reference and distorted

NSIs and SCIs is given in Figure 12.

Yang et al. [330] constructed a SIQAD database consisting of 20 source and 980 distorted SCIs. An

objective measure is also proposed by considering textual and pictorial regions differently. A structure-

induced quality metric (SIQM) was proposed in [331], which is described by a SSIM weighted with a

structural degradation measurement computed using SSIM as well. Wang et al. [332, 333] presented

a method based on visual field adaptation and information content weighting. Ni et al. [37, 334–336]

proposed several metrics by measuring the similarity of edge and gradient information. Fu et al. [337]

designed a SCI quality model based on multi-scale difference of Gaussian. Gu et al. [338] developed a SCI

quality measure using saliency-guided GM similarity. Similarly, the structural variation based quality

index (SVQI) proposed in [339] models the global and local structure variations introduced by distortions.
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(a) (b) (c) (d)

Figure 12 (Color online) A comparison of reference and distorted NSIs and SCIs. (a) Reference NSI; (b) distorted NSI;

(c) reference SCI; (d) distorted SCI. Images are from the CCT database [38].

Fang et al. [340] introduced an uncertainty weighting method to fuse the quality of textual and pictorial

regions. Zhang et al. [341] introduced an FR SCI quality measure based on separate measures of the

edge-structure degradations for different segmented regions which are segmented and classified via CNN.

Wang et al. [342] constructed a compressed SCI quality assessment database, and proposed an RR

measure for SCIs via learning a set of wavelet domain features. An RR SCI measure was proposed

in [343] by combining statistical features extracted from the primary visual information and the amount

of uncertainty. Jakhetiya et al. [344] proposed an RR IQA algorithm for SCIs based on a perceptually

relevant prediction model which emphasizes more on the textual regions. Gu et al. [345] learned a blind

quality evaluator for SCIs based on an FR SCI quality evaluator. A CNN-based framework was used

in [346]. Gu et al. [347] developed a blind metric via learning specific features and fusing through SVR.

And the regression model was trained with an FR SCI quality measure. Shao et al. [348] presented a

blind measure for SCIs from a perspective of sparse representation. Fang et al. [349] proposed an NR

SCI quality measure by incorporating the statistical luminance and texture features.

Besides those quality measures specifically designed for SCIs, some measures are proposed for multiple

types of images. Ye et al. [190] presented a general-purpose NR IQA measure working for both NSIs and

document images captured from document files. Xu et al. [193] proposed a blind IQA method based on

HOSA. HOSA works for multiple image types including NSI, SCI, and document image. Min et al. [124]

proposed an NR quality measure for JPEG compressed NSIs and SCIs. Min et al. [38] constructed a

CCT database which contained reference and compressed NSIs, CGIs, and SCIs. They also proposed a

unified content-type adaptive (UCA) blind IQA model that was applicable across content types. Zhou et

al. [350] designed a blind quality measure for SCIs and NSIs based on a dictionary of learned local and

global quality features.

4.4 Tone-mapping IQA

High dynamic range (HDR) images need to be converted low dynamic range (LDR) images to be visualized

on standard LDR displays. Tone-mapping operators (TMOs) are used in this step. An illustration of

tone-mapped images is given in Figure 13. To assess the perceptual quality of the tone-mapped images

created by different TMOs, many quality metrics are proposed.

Yeganeh and Wang [42] introduced a TMQI by combining a multi-scale signal fidelity measure modified

from SSIM and a naturalness measure based on natural scene intensity statistics. Ma et al. [351] improved

TMQI to TMQI-II through modifying the two key components in TMQI, i.e., the structural fidelity

and statistical naturalness measures. Gu et al. [352, 353] developed a blind tone-mapped quality index

(BTMQI) by analyzing the information, naturalness and structure of the tone-mapped images. Nafchi

et al. [354] proposed a feature similarity index for tone-mapped images (FSITM). FSITM compared the

locally weighted mean phase angle maps of the HDR and LDR images. Visual attention was considered

in [311], and a saliency weighted tone-mapped quality index (STMQI) was proposed. Kundu et al. [355]

conducted a large-scale crowdsourced study for tone-mapped HDR images. The constructed database

includes images obtained by both TMOs and multi-exposure fusion (MEF) algorithms, with and without

postprocessing. Based upon the subjective study, Kundu et al. [355] later designed NR HDR picture

quality models using space-domain NSS features and HDR-specific gradient-based features. Hadizadeh

et al. [356] extracted perceptually relevant quality-related features such as structural fidelity, naturalness,

and overall brightness, and integrated the features to the tone-mapping quality. Yue et al. [357] introduced
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Figure 13 (Color online) Tone-mapped images derived from different TMOs. Images are from the TMID [42].

Figure 14 (Color online) Images with multiple exposure levels (top) and the fused images (bottom). Images are from

the MEF database [44].

a biologically inspired tone-mapping quality measure from the perspective of color information processing

in the brain. Yue et al. [358] integrated colorfulness, naturalness and structure features to assess the tone-

mapping quality.

4.5 Multi-exposure fusion IQA

MEF combines images taken with multiple exposure levels for an informative output. An illustration of

images with multiple exposure levels and the fused images is given in Figure 14. Some IQA models are

proposed for the MEF evaluation.

Xydeas and Petrovic [359] proposed a measure of the visual information transferred from the input

images into the fused image. Qu et al. [360] designed an information measure for image fusion evaluation

based on mutual information. Piella and Heijmans [361] utilized local measures to estimate how well

the salient information was preserved in the fused images. Cvejic et al. [362] proposed an image fusion

metric based on mutual information and Tsallis entropy. Chen and Varshney [363] developed a human

perception inspired quality metric for image fusion based on regional information. Zheng et al. [364]

proposed a ratio of spatial frequency error (rSFe) measure based on the spatial frequency which reflects

the local intensity variation. Wang and Liu [365] proposed an edge information preservation inspired

metric. Hossny et al. [366] modified the classical method based on mutual information [360]. Chen and

Blum [367] computed the quality of a fused image from a contrast preservation map which described the

relationship between the fused image and each source image. Hassen et al. [368] developed an objective

quality measure for multi-exposure multi-focus image fusion. The developed fusion quality index (FQI)

incorporates several key factors including contrast preservation, sharpness, and structural preservation.

Ma et al. [44] assessed the quality of MEF images based on the multi-scale SSIM principle and a measure

of patch structural consistency. Kundu et al. [355] conducted subjective and objective quality study of

images obtained by TMOs and MEF algorithms.

4.6 Retargeting IQA

Image regargeting usually crops image and changes resolution and aspect ratio, without other obvious

distortions. An illustration of original and retargeted images is given in Figure 15. Some IQA methods
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Figure 15 (Color online) Original (the 1st column) and retargeted images (the 2nd–4th columns). Images are from the

MIT RetargetMe [31].

are designed specifically for this type of operation.

In [369], SIFT flow and optical flow are used to calculate the correspondence between images. The

loss of area in salient regions, the preservation of aspect ratio of salient objects and the degradations of

local shapes are extracted as quality features and fused through SVR. In [370], features of image pairs

were fed into the pairwise rank learning to learn a ranking model. Image quality scores are generated

by referring to an exponential curve fitting function based on the rankings. Zhang et al. [371] solved

the backward registration problem to reveal the geometric change during image retargeting. Information

loss and visual distortion are considered to assess local block changes. The overall retargeting quality

is predicted via visual importance based pooling. Fang et al. [372] created an image retargeting quality

database, and predicted the perceptual quality of retargeted images by weighting the SSIM map using

the saliency map. Ma et al. [32] also built an image retargeting quality database. Several quality metrics

were evaluated on the database, and experimental results demonstrated that the performance will be

better if the shape distortion and content information loss were considered. In [373], SIFT flow was used

to estimate the dense correspondence. The estimated SIFT-flow vector and the calculated saliency map

were employed to measure the geometric distortion. The information loss was also calculated with the

saliency map.

Chen et al. [374] designed a bidirectional natural salient scene distortion model for image retarget-

ing quality assessment. The model consisted of a image NSS measurement, a salient global structure

distortion measurement, and a bidirectional salient information loss measurement. Zhang et al. [375]

utilized multiple-level features for retargeting quality assessment, including low-level aspect ratio simi-

larity, mid-level edge group similarity, and high-level face block similarity. Zhang et al. [376] predicted

the retargeting quality by evaluating the retargeting fidelity and detecting deformation inconsistency on

three levels: region-level segmentation, patch-level partition and pixel-level correspondence. Liang et

al. [377] designed a retargeting quality measure based on five factors: preservation of salient regions,

analysis of the influence of artifacts, preservation of the global structure of the image, compliance with

well-established aesthetics rules, and preservation of symmetry.

4.7 Multiple distortions

In a visual communication system, the steps of capturing, processing, compression, transmission, and

decompression, all introduce different distortions in a consecutive manner. Therefore, it is an important

topic to study IQA for multiple distortions. An illustration of images degraded by multiple distortions is

given in Figure 16.

Gu et al. [34] created a multiply distorted image database and proposed a blind measure inspired

by free energy based brain theory. The metric incorporated the measures of single distortions and the

joint effects between different distortion types. Zhang et al. [378] used cartoon-texture decomposition to

separate image into cartoon part with salient edges and texture part with noises. Then the degrees of
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Figure 16 (Color online) Images degraded by multiple distortions. Images are from the MDID2013 [34].

Figure 17 (Color online) A comparison of simulated and authentic distortions. Images are from the LIVE [13] and LIVE

Wild [40] databases.

blur and noise are estimated from different parts. The joint effect is also measured. A pooling strategy

is employed to derive the final quality score. Lu et al. [379] extracted NSS features used in SRNSS,

BRISQUE-L and BIQI which are representative and fast for calculation. The SRNSS and BIQI features

are both extracted in the wavelet domain while the BRISQUE-L features are extracted in the spatial

domain. An improved bag-of-words (BOW) model is applied to encode extracted features, and the SVR

is used to map image features to the quality score. In [380], the authors described images by feature maps

calculated from color Gaussian jet of the image. LBPs are applied to measure the structural degradations

on these feature maps. In [381], LBPs were calculated on the gradient map of images to measure the

structural degradation caused by multiple distortions. The histogram of LBP is further weighted by

gradient magnitude. SVR is adopted to map features to the quality index. Zhang et al. [382] proposed

an opinion-unaware blind IQA method for multiply and singly distorted images. They first identified the

distortion types, and then estimated the distortion parameters for quality prediction.

4.8 Authentic distortions

Almost all of the distortions used in IQA research are simulated with explicit models. However, in

more realistic settings, the image acquisition, processing and transmission steps can introduce so called

authentic distortions that cannot be clearly modeled. A comparison of simulated and authentic distortions

is given in Figure 17. Some IQA algorithms for authentic distortions are proposed in recent years.

Brooks et al. [383] considered realistic distortions from compression and error concealment in video

compression/transmission applications and simulated typical distortions encountered in other applica-

tions. A complex wavelet SSIM (CWSSIM) model was proposed considering viewing distance. Yang et

al. [384] proposed a blind image quality assessment model. Features including the statistical property

and characteristics for authentic distortions were extracted by considering the perception of human visual

system. Support vector regressor was trained to predict the final score. Ghadiyaram et al. [385, 386] ex-

tracted NSS features in different color spaces and transform domains, then SVR or deep belief net (DBN)

was used to fuse all features. Li et al. [238] extracted structural features by analyzing LBP descriptors

and properties of luminance magnitudes in the form of histogram, and features at different scales were

fused via SVR to generate a final score. Liu et al. [387] extracted the quality-aware features from the

low-level human vision characteristics and the high-level brain activities in free-energy principle to predict

the camera image quality. Besides authentically distorted images, authentically distorted videos were also

studied in [388].

4.9 View synthesis IQA

View synthesis can be of great value in various applications, such as virtual reality, augmented reality, free

viewpoint video, and light field. Various view synthesis methods have been proposed in recent years, and
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Figure 18 (Color online) DIBR synthesized images. Images are from the IRCCyN/IVC DIBR image database.

Figure 19 (Color online) Hazy and dehazed images. Images are from the DHQ database.

these methods can introduce different visual artifacts and result in imperfect quality. Quality evaluation

of DIBR techniques has been widely researched. DIBR tries to synthesize a view for any viewpoint given

the sparse views and the scene depth. An illustration of DIBR synthesized images was given in Figure 18.

Bosc et al. [45] constructed the IRCCyN/IVC DIBR images database, which is the basis of the following

DIBR-synthesized image quality evaluation studies. Battisti et al. [389] proposed a 3D synthesized

view image quality metric (3DSwIM) by comparing the statistical features of wavelet subbands of two

input images. Sandić-Stanković et al. [390, 391] proposed a morphological pyramid peak signal-to-noise

ratio (PSNR) metric (MP-PSNR), a morphological wavelet PSNR (MW-PSNR) metric, and the reduced

versions of MP-PSNR and MW-PSNR. Li et al. [392] proposed a metric by measuring local geometric

artifacts and global sharpness. Gu et al. [393] introduced a metric based on the local image descriptor

auto-regressor. Tian et al. [394] evaluated the quality by measuring the typical synthesis distortions.

Zhou et al. [395] assessed the DIBR-synthesized video quality by measuring temporal flickering. Ling

et al. [396] proposed a quality measure for free-viewpoint videos by quantifying the elastic changes of

multi-scale motion trajectories.

4.10 Dehazing IQA

Dehazing IQA is driven by the need of evaluating the effect of various image dehazing outputs. Example

hazy and dehazed images were given in Figure 19. In the literature, image dehazing can be evaluated

using two strategies: using synthetic hazy images, or using real hazy images. When using synthetic hazy

images, the ground-truth haze-free images are available, and it is an FR IQA problem. While if real hazy

images are used, there are no ground-truth haze-free images, thus it is an NR IQA problem.

In the strategy of using synthetic hazy images, generally FR IQA measures like PSNR and SSIM are

used for quality evaluation [397]. However, in [47], the authors constructed a synthetic haze removing

quality (SHRQ) database, and found that traditional FR IQA measures like PSNR and SSIM are not

effective enough for synthetic haze removing quality evaluation. Thus they introduced an FR dehazing

quality measure based on some existing FR IQA methodologies. Besides evaluation using synthetic hazy
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Figure 20 (Color online) Example VR images from the OIQA database.

images, evaluation using real hazy images is also desirable. In [48], the authors conducted a subjective

dehazing quality assessment study and constructed the IVC dehazed image database, in which most of

the hazy images were realistic hazy images and a few were synthetic hazy images. However, no objective

quality measure is proposed. Min et al. [46] constructed the dehazing quality (DHQ) database (all of

the hazy images are real hazy images) and proposed an objective dehazing quality index (DHQI) by

extracting and fusing three groups of features, including: haze-removing features, structure-preserving

features, and over-enhancement features. These 3 groups of features have captured the most key aspects

of dehazing. Besides the above studies, some early studies also utilized some simple image contrast or

edge descriptors to evaluate the dehazing effect [398], and sometimes the general-purpose IQA measures

like BRISQUE [176] and NIQE [177] will also be used.

4.11 Virtual reality IQA

Virtual reality (VR) or omnidirectional IQA has also attracted much attention recently, especially in the

recent 5 years. Example VR images are shown in Figure 20. It is driven by the prevalence of various

VR applications. Owing to the specific characteristics of omnidirectional viewing experience in the head

mounted display (HMD) and various specific VR content processing techniques, quality assessment of

VR image needs to be specifically studied.

Several VR IQA databases have been constructed to facilitate the relevant research, including the

OIQA Database [49], CVIQ Database [50, 53], and the LIVE 3D VR IQA Database [51]. Besides these

open VR IQA databases which are publicly available, there are also some subjective VR IQA studies

in the literature, for example assessment of encoded omnidirectional videos [399,400], and assessment of

visually induced motion sickness in immersive videos [401]. While in the context of objective VR IQA, a

multichannel CNN for blind 360-degree image quality assessment (MC360IQA) was proposed in [50, 53].

In this method, each 360-degree image is decomposed into six viewport images, which are evaluated by

six channels of CNNs. There are also some methods which generalize traditional IQA methods like PSNR

and SSIM for VR contents, for example the sphere based PSNR (S-PSNR) [402], the weighted spherical

PSNR (WS-PSNR) [403], the Craster parabolic projection PSNR (CPP-PSNR) [404], the non-content-

based perceptual PSNR (NCPPSNR) and content-based perceptual PSNR (CP-PSNR) [400]. Another
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VR content perception topic which is closely related VR quality assessment is visual attention prediction

in VR. Visual attention prediction can be of great value in various VR content processing techniques,

for example VR quality assessment, compression, and transmission [405]. A grand challenge for this

topic was organized at ICME’17 and some VR saliency models were proposed [406–412]. Specifically,

head movement prediction, eye movement prediction, and scanpath prediction were investigated in these

studies. An overview of the VR perception, assessment and compression studies was given in [413].

4.12 Other relevant topics

Besides the topics which have been reviewed above, there are also many other quality assessment topics

dedicated to the assessment of various types and formats of multimedia content. Limited by space, we

will not give an overview for each of these topics, but we will give a summary of these research topics

and several representative studies for each topic below.

• Video quality assessment. Video quality assessment studies are not included in this study. A survey

of video quality assessment was given in [414]. The most common category of video quality measures are

based on content analysis, and they are effective for the quality evaluation of some common distortions,

for example, video compression, blur, and noise [415, 416]. Besides that, there are also some methods

which predict video quality based on video specification parameters [417, 418] and some other system

parameters [419].

• Video streaming quality assessment. This category of studies address distortions that occur over

longer time spans, for example bitrate changes and rebuffering events [420–425].

• Quality assessment of audio-visual signals. Considering that most of the quality assessment studies

focused on only single-modality video or audio signals, some studies were conducted to evaluate the joint

quality of audio-visual signals [426, 427].

• Quality assessment of compressed authentically distorted image. This topic aims at predicting the

quality of compressed authentically distorted images which are captured in the wild [428].

• Quality assessment of contrast changed images. This topic focuses specifically on contrast changed

images, because most of the traditional IQA measures are not effective for this kind of distortion [429–433].

• Image aesthetic assessment. Different from traditional IQA which aims to evaluate the quality

degradation introduced by various image distortions like image compression, blur, and noise, image

aesthetic assessment tries to assess photo quality based on photographic rules, and its influencing factors

may include uses of lighting, contrast, color, and image composition [434–436]. The image aesthetic

measures are also very different from image quality measures. An overview of this topic was given

in [434].

• Transparently encrypted image quality assessment. Transparent encryption tries to protect partial

content and fulfill the security and quality requirements, and some quality measures are proposed to

evaluate the quality of such process [437, 438].

• Light field quality assessment. Owing to the complex structures and high dimensions of light field

data, conventional processing techniques for 2D images may not work well for light field, thus light field

quality assessment is specifically researched [439–441].

• Quality assessment of X-Ray images or TeraHertz (THz) images. Besides visible light IQA, the

quality assessment of X-Ray images [442] or TeraHertz (THz) images [443, 444] have also aroused some

attention recently.

• Quality assessment of sonar images. The degradations of sonar images are mainly introduced during

the process of acquisition and transmission, and some quality measures are proposed for the corresponding

quality evaluation [445, 446].

• Quality assessment considering the environment. Besides the quality of the content, the conditions

of the environment in which the human beings view the content also have large impacts on the quality

of experience. Some studies have investigated the influence of such environment conditions, for example,

backlight luminance was considered in [447] while the environment luminance was further considered

in [448].
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Table 2 Performance of full-reference image quality assessment algorithms

Types Metrics CSIQ LIVE TID2008 TID2013

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

PSNR 0.8058 0.7512 0.8756 0.8723 0.5531 0.5223 – –

SSIM [59] 0.8756 0.8612 0.9479 0.9449 0.7749 0.7732 – –

VPSNR [450] 0.96 0.98 – – 0.92 0.96 – –

IW-SSIM [61] 0.9213 0.9144 0.9567 0.9522 0.8559 0.8579 – –

MS-SSIM [60] 0.9133 0.8991 0.9513 0.9489 0.8542 0.8451 – –

Spatial method
NSER [70] 0.9337 0.9473 0.9419 0.9395 0.7404 0.7957 – –

GS [66] 0.8005 0.7998 0.8756 0.8723 0.5794 0.5726 – –

VGS [68] 0.9662 0.9692 0.9696 0.9686 0.8983 0.9079 – –

IGM [63] 0.9401 0.9280 0.9580 0.9578 0.8902 0.8858 – –

GMSD [67] 0.957 0.954 0.960 0.960 0.891 0.879 – –

SVCM [69] 0.951 0.949 0.964 0.962 0.874 0.889 0.787 0.857

IFS [451] 0.9581 0.9576 0.9599 0.9586 0.8903 0.8810 0.8697 0.8791

Transformation-based

VSNR [19] 0.8109 0.7355 0.9271 0.9229 0.7046 0.6820 – –

VIF [95] 0.9195 0.9277 0.9632 0.9598 0.7496 0.8090 – –

MIQE [96] 0.911 0.916 0.964 0.962 0.807 0.840 – –

MIQEC [96] 0.930 0.926 0.961 0.960 0.788 0.829 – –

DCT-QM [99] 0.9332 0.7674 0.9557 0.8260 0.8392 0.6641 0.8544 0.6791

SC-DM [100] 0.9423 0.7863 0.9475 0.8092 0.9021 0.7252 0.9003 0.7270

SC-QI [100] 0.9434 0.7870 0.9480 0.8098 0.9051 0.7294 0.9052 0.7327

IQDM [98] 0.9058 0.8976 0.9336 0.9536 0.8415 0.8369 – –

Learning-based

Q [75] 0.881 0.900 0.925 0.924 0.817 0.816 – –

SFF [80] 0.9627 0.9643 0.9649 0.9632 0.8767 0.8817 – –

ParaBoost [77] 0.9733 0.9766 0.9819 0.9802 0.9772 0.9767 0.9575 0.9567

QASD [81] 0.9516 0.9466 0.9646 0.9602 0.8899 0.8877 0.8657 0.8894

KRR [82] 0.9141 0.9197 0.9574 0.9587 0.8865 0.8903 0.7969 0.8220

NMF [452] 0.9727 0.9763 0.9760 0.9758 0.9466 0.9513 – –

DeepSim [90] 0.919 0.919 0.974 0.968 – – 0.846 0.872

DADF [79] – – – – 0.930 0.782 – –

Other FSIM [64] 0.9242 0.9120 0.9634 0.9597 0.8805 0.8738 – –

Li et al. [97] 0.933 0.928 0.946 0.936 0.861 0.869 – –

5 Evaluation of IQA models

5.1 Evaluation protocol

According to the recommendations given by video quality experts group (VQEG) [449], which are widely

accepted in the research of IQA, performance of objective assessment algorithms can be evaluated from

three aspects: prediction accuracy, prediction monotonicity and prediction consistency. For performance

comparison, VQEG suggests to reduce the nonlinearity of the prediction values of objective models. A

five parameter monotonic logistic function is commonly used to map the computed quality scores:

p = β1

(

0.5−
1

1 + eβ2(o−β3)

)

+ β4o+ β5, (13)

where o and p are the computed and mapped scores. After the nonlinear mapping, the following five

evaluation criteria can be used to measure the performance of the IQA models.

• Spearman rank order correlation coefficient (SROCC):

SROCC = 1−
6
∑N

n=1 d
2
i

N(N2 − 1)
, (14)

where di represents the difference between the i-th images’s ranks in subjective and objective evaluations,

and N is the number of testing images.
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Table 3 Performance of reduced-reference image quality assessment algorithms

Metrics CSIQ LIVE TID2008 TID2013

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

RRED [110] – – 0.9429 0.9385 – – – –

RR-SSIM [111] 0.8527 0.8426 0.9129 0.9194 0.7210 0.7231 – –

Wu et al. [102] – – 0.732 0.725 0.528 – – –

WNISM [112] – – 0.880 0.883 – – – –

REDLOG [113] 0.8576 0.8560 0.9455 0.9372 0.6864 0.7326 0.6829 0.7400

DNT marginal [114] – – 0.9287 0.9173 – – – –

SPCRM-SCHARR [453] 0.8889 0.8906 0.9131 0.9097 0.7567 0.7403 – –

Table 4 Performance of no-reference image quality assessment algorithms

Types Metrics CSIQ LIVE TID2008 TID2013

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

BIQI [168] – – 0.8195 0.8205 – – – –

DIIVINE [169] – – 0.916 0.917 – – – –

BLIINDS-II [175] – – 0.9202 0.9232 – – – –

BRISQUE [176] – – 0.9395 0.9424 – – – –

NIQE [177] – – 0.9135 0.9147 – – – –

NSS-based IL-NIQE [178] 0.822 0.865 0.902 0.906 – – 0.521 0.648

GM-LOG [179] 0.9243 0.9457 0.9511 0.9551 0.9369 0.9406 – –

IDEAL [180] 0.8683 0.8913 0.9409 0.9462 – – 0.7190 0.7674

DESIQUE [186] 0.928 0.942 0.9437 0.9465 0.919 0.925 – –

C-DIIVINE [172] 0.910 0.935 0.9444 0.9474 0.921 0.925 – –

GLBP [183] – – 0.921 – – – – –

LPSI [182] – – 0.9511 0.9542 0.9399 – – –

CORNIA [189] – – 0.942 0.935 0.813 0.837 – –

HOSA [193] 0.9298 0.9480 0.9504 0.9527 – – 0.9521 0.9592

QAC [191] 0.8627 0.8768 0.8857 0.8608 0.8697 0.8377 – –

SRNSS [199] – – 0.9304 0.9318 – – – –

SOM [194] – – 0.964 0.962 – – – –

TCLT [201] 0.891 – 0.934 0.935 0.872 – – –

Learning-based
LQP [197] 0.9109 0.9255 0.9289 0.9307 – – 0.9244 0.9325

BNB [204] – – 0.9508 0.9497 – – – –

NRHC [78] – – 0.8776 0.8714 – – – –

PIPs [205] 0.843 – 0.938 – – – 0.779 –

DIPs [206] 0.930 0.949 0.958 0.957 – – 0.877 0.894

MRLIQ [208] 0.9219 – 0.9528 – – – – –

SESANIA [216] – – 0.9340 0.9476 0.8936 0.9069 – –

BIECON [226] – – 0.961 0.962 0.923 – – –

NFERM [237] 0.9142 – 0.9405 0.9457 0.9156 – – –

HVS-based
NRSL [238] 0.930 0.954 0.952 0.956 – – 0.945 0.959

BSD [239] 0.9330 0.9489 0.9618 0.9653 0.9557 0.9673 – –

DIQES [243] 0.8561 0.8879 0.8966 0.9034 0.8223 0.8103 0.8355 0.8348
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Table 5 Performance of 3D image quality assessment algorithms

Types Metrics NBU 3D LIVE 3D Phase-I LIVE 3D Phase-II MCL-3D

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

FR Liu et al. [275] 0.9206 0.9330 0.9336 0.9459 0.9030 0.9162 – –

FR SDM-GSSIM [267] – – 0.9248 0.9332 – – – –

Binocular visual pathways FR Lin et al. [268] – – 0.9256 0.9391 0.9196 0.9292 – –

FR Lin et al. [271] – – 0.9314 0.9366 0.8824 0.8984 – –

Cyclopean images
FR NN-MS-SSIM [275] – – 0.9385 0.9371 – – – –

NR Zhou et al. [276] – – 0.887 0.928 0.823 0.861 – –

NR Zhou et al. [454] – – 0.904 0.934 0.890 0.905 – –

NR Zhou et al. [284] – – 0.901 0.929 0.819 0.856 0.837 0.867

FR STRIQE [278] – – 0.9223 0.9275 0.8920 0.9019 – –

NR S3D-BLINQ [281] – – – – 0.905 0.913 – –

Feature extraction RR Wang et al. [280] – – 0.8890 0.8921 – – – –

RR Ma-1 et al. [282] – – 0.9034 0.9033 0.8093 0.8431 – –

RR Ma-2 et al. [282] – – 0.9052 0.9056 0.7938 0.8179 – –

FR 3D-DQE [253] 0.9420 0.9493 0.9449 0.9565 0.9106 0.9265 0.9040 0.9138

NR Shao et al. [287] 0.9026 0.9061 0.8756 0.9042 – – – –

FR Shao et al. [288] 0.9411 0.9413 0.9251 0.9350 0.8494 0.8628 – –

RR Qi et al. [289] – – – – 0.867 0.915 – –

Sparse representation NR Shao et al. [290] 0.9375 0.9486 0.9440 0.9531 0.8849 0.9034 – –

NR Shao et al. [291] 0.9305 0.9479 0.9498 0.9572 – – – –

NR Shao et al. [293] – – 0.8667 0.8846 0.8717 0.9095 – –

NR NUMBLIM [294] 0.8757 0.8679 0.8849 0.8913 0.8054 0.7843 – –

• Kendall rank order correlation coefficient (KROCC):

KROCC =
Nc −Nd

0.5(N − 1)N
, (15)

where Nc andNd express the numbers of concordant and discordant pairs in the testing data, respectively.

• Pearson linear correlation coefficient (PLCC):

PLCC =

∑N

i=1(pi − p̄)(si − s̄)
√

∑N
i=1(pi − p̄)2(si − s̄)2

, (16)

where si and pi indicate the i-th image’s subjective score and converted objective rating after nonlinear

mapping, s̄ and p̄ are the mean of all si and pi.

• Root mean square error (RMSE):

RMSE =

√

√

√

√

1

N

N
∑

i=1

(pi − si)2. (17)

• Mean absolute error (MAE):

MAE =
1

N

N
∑

i=1

|pi − si|. (18)

Among the above five evaluation criteria, SROCC and KROCC measure the prediction monotonicity,

PLCC estimates the linearity and consistency, RMSE and MAE evaluate the prediction accuracy. Higher

SROCC, KROCC, PLCC scores and lower RMSE, MAE scores indicate better correlation with the

subjective ratings.
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5.2 Performance comparison

We compare performance of those surveyed IQA methods in this subsection. Not all reviewed metrics

are included because not all algorithms are publicly available. Considering the randomness in both the

algorithms and the evaluation processes, for a fair comparison, we only record the performance reported

in the original papers.

Performances of FR, RR, NR, and 3D IQA measures are listed in Table 2 [19, 59–61,63, 66–70,75, 77,

79–82, 90, 95–100, 450–452], Table 3 [102, 110–114, 453], Table 4 [78, 168, 169, 172, 175–180, 182, 183, 186,

189,191,193,194,197,199,201,204–206,208,216,226,237–239,243], and Table 5 [52,253,264,267,271,275,

276, 278–282, 284, 287–291, 293, 294, 454], respectively. SRCC and PLCC performance are used owing to

limit of space and because of their popularity.

General-purpose FR, RR and NR IQAmeasures are compared using LIVE [13], CSIQ [16], TID2008 [14],

and TID2013 [15], which are four widely used general-purpose IQA databases. 3D IQA measures are com-

pared on LIVE 3D Phase I [22], LIVE 3D Phase II [23], Ningbo 3D [52], and MCL-3D [28] databases.

Note that most FR and NR IQA measures are training-free, and are tested on the whole IQA databases.

And many NR IQA measures involve training, mostly with an 80% train – 20% test strategy. Those

performance results can be used as a reference for designing quality metric and optimization algorithm

for visual communication systems.

6 Conclusion

In this survey, we conducted a comprehensive and up-to-date review of perceptual image quality assess-

ment. Subjective quality assessment databases including classical and emerging ones, were reviewed first.

Then traditional full-reference, reduced-reference and no-reference image quality metrics were analyzed in

sequel. Emerging topics in the field such as stereoscopic images, saliency guided approach, screen content

images, tone mapping and multiple expose image, were also reviewed. Finally, performance evaluation

model were introduced and the performance of many quality metrics were listed and compared. This

survey serves as an overview of the quality assessment problem for visual communication for researcher

in related areas. It also facilitates researchers within the field finding solutions and trends in their study.
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